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Multiple types of sleep arousal account for a large proportion of the causes of sleep disorders. The detection of sleep

arousals is very important for diagnosing sleep disorders and reducing the risk of further complications including heart

disease and cognitive impairment. Sleep arousal scoring is manually completed by sleep experts by checking the

recordings of several periods of sleep polysomnography (PSG), which is a time-consuming and tedious work. The

development of efficient, fast, and reliable automatic sleep arousal detection system from PSG may provide powerful help

for clinicians. This paper reviews the automatic arousal detection methods in recent years, which are based on statistical

rules and deep learning methods.
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1. Introduction

The appearance of sleep arousals (also known as microarousals) reflects the interruption and fragmentation of sleep and

is a harbinger of the presence of somnipathy. Frequent microarousals can cause sleep disruption, sleep fragmentation,

sleep disorder, aggravating daytime sleepiness, and other symptoms . An increasing amount of evidence indicates that

sleep arousals diseases are the concomitant symptoms of other diseases, including weight gain, depression, heart

diseases, and diabetes. Therefore, advancing our current understanding of microarousals neurophysiology is not only a

challenging research issue but also a public health issue.

Microarousals can also be spontaneous, caused by grinding teeth, partial airway obstruction, or even snoring . A certain

amount of spontaneous arousals seems to be an intrinsic part of physiological sleep , but excessive arousals can

disrupt healthy sleep.

Polysomnography (PSG) collects all of the vital signs in a multidimensional time series. The vital signs include

electroencephalogram (EEG), electromyography (EMG), electrocardiography (ECG), electrooculography (EOG), blood

oxygen saturation level (SaO 2), respiratory airflow (airflow), and respiratory movement (chest ABD). Normal and

abnormal brain activities are typically picked up by EEG. Some neuropathic disorders leave their signature on EEG .

PSG is the gold standard for detecting sleep disorders.

The physiological band of interest for PSG signals usually ranges from 0.01 to several hundred cycles per second. The

lowest band in conventional EEG studies has a lower limit of 0.5 Hz or 1.0 Hz as the ‘slow frequency’ and ‘sub-slow’ EEG

bands, while 100 Hz corresponds to the highest frequency of the EEG band . The ECG spectrum is generally

considered to be 0.05–100 Hz . Jarvis et al.  suggested that ECG frequency associated with sleep apnea can be

reduced to 0.02 Hz. EMG ranges from 5.0 Hz to higher frequencies up to 450 Hz . Respiration movements, airflow, and

other forms of SaO2 are low-frequency phenomena with activity ranging from 0.05 Hz to 0.35 Hz .

2. Micro arousal Detection with Traditional Machine Learning Methods

The general workflow in this field is shown in Figure 1 . Data scientists first extract the domain-specific features of PSG

signals. Then, they use machine learning methods to classify them into non-arousal and arousal fragments.
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Figure 1. General workflow of sleep arousal detection models with machine learning.

Designing hand-made features and then finding the best combination of these features to improve the classifier

performance are difficult and time-consuming, because the process requires extensive domain knowledge, such as

feature selection or dimensionality reduction techniques. Even so, the automatic detection with manual feature extraction

does not guarantee optimal identification for tasks.

Another obstacle for automatic detection with traditional machine learning methods is that the classifier needs to work for

many different patients whose signals may have different relevant statistics. Therefore, the same algorithm can produce

different results, depending on how its criteria match the data for a particular patient. Table 1 summarizes the different

automatic or semi-automatic detection algorithms  with wide spread machine learning methods.

Table 1. Various studies conducted on the automated detection of microarousal regions in PSG signals using traditional

machine learning methods.

Author (Year)
[Reference] Database Data Preprocessing Machine Learning Model Results

Huupponen et
al. (1996) Local dataset FFT, average power MLP Accuracy = 41%

Patanerli et al.
(1999) Naya University Wavelet transform,

moving average, filter
SAS software;

STEPDISC program
Sensitivity = 88.1%, Selectivity

= 74.5%

Gouveia et al.
(2003) Local dataset FFT, frequency

analysis A set of scoring rules Detection rate = 70%

Cho et al.
(2005) 

South Korea’s Asan
Medical Center

Filtering, power
spectrum, FFT SVM Sensitivity = 75.26%, Specificity

= 93.08%

Agarwal et al.
(2006) 

Local dataset (two
patients)

Second-order
adaptive filter,
frequency, MAA, etc.

A set of decisional rules Sensitivity = 76.15%

David et al.
(2006) 

National Institutes of
Health (NIH) Sleep

Disorders Research
Plan

1. Bi-directional
recursive filtering, 2.
peak detection
3. relative trough
position

Passive
ballistocardiograph-

based system

Sensitivity = 77.3%,
Specificity = 96.2%

Shmiel et al.
(2009) 

Aviv’s Assuta
Medical Center

FFT, critical points,
etc.

Sequential pattern
discovery field

Sensitivity = 75.2%, positive
predictive value = 76.5%

Foussier et al.
(2013) Self-bulit database HRV, MD, 72 features Linear mixed mode

 

Espiritu et al.
(2015) 

Texas State Sleep
Center

Savitzky-Golay filter,
energy power/entropy,
zero-crossing rate, etc.

Decision tree Accuracy = 81.63%

Shahrbabaki et al.
(2015) 

Self-bulit database
(6 male, 3 female)

Butterworth filter,
Welch’s algorithm,
32 features

KNN Accuracy = 93.6%

Wallant et al.
(2016) 

Self-bulit database (35
healthy volunteers)

PSD, filtering data,
segmentation, maximal
amplitude, and slope

Adapted
thresholds Sensitivity = 83%

Subramanian et al.
(2018) PhysioNet 2018 28 features GLM, RF Highest AUROC = 0.847,

highest AUPRC = 0.630
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Ugur et al. (2019) SHHS CWT SVM
Accuracy = 98.2%,

positive predictive value
= 97.93%

Liu et al. (2020) PhysioNet 2018 ICA, double density DWT
algorithm, FIR filter CNN with RF AUPRC = 0.552

MLP = multilayer perceptron neural network; SVM = support vector machine; MAA = maximum absolute amplitude; HRV =

heart rate variability; RF = random forest; SCL = skin conductance level; GLM = generalized linear model; CWT =

continuous wavelet transforms; ICA = independent component correlation algorithm; DWT = discrete wavelet

transformation; AUROC = area under the receiver operating characteristic curve; AUPRC = area under the precision-recall

curve.

3. Microarousal Detection with Deep Learning Methods

Different from the manual feature extraction, neural networks can automatically learn variations and trends in the signal by

carrying out feature extraction procedures through an abstract method. Deep learning methods possess the strong

capability to learn complex features by directly applying them to raw data without extracting any hand-crafted features.

Only recently have researchers begun to show a preference for deep learning methods, such as CNN ,

ResNet , the Siamese architecture network , RNN, and LSTM , over traditional machine learning methods in

arousal detection.

The CNN makes it easier to extract different features of the input PSG data through convolution kernels. The models

using CNN reviewed in this paper are summarized in Table 2 .

Table 2. Detailed information of models using the CNN.

Author (Year) Database Preprocessing Results

Dongya et al. (2018) PhysioNet 2018 Welch algorithm AUPRC = 0.114

Varga et al. (2018) PhysioNet 2018 68 features AUPRC = 0.42

Patane et al. (2018) PhysioNet 2018 Filter, data augmentation AUPRC =0.40

Miller et al. (2018) PhysioNet 2018 - AUPRC = 0.37

Zabihi et al. (2018) PhysioNet 2018 - AUPRC = 0.31

Olesen et al. (2020) National Sleep Research Resource Resampled, baseline model F1-score = 0.682

Zhou et al. (2020) PhysioNet 2018 Re-sample, Fourier transform AUPRC= 0.39

Jia et al. (2020) Beijing Tongren Hospital Down-sampled Recall = 86.0%

KSS = Karolinska sleepiness scale, F1-score = harmonic mean of precision and recall.

Common time series models include the RNN, LSTM, and bidirectional LSTM (Bi-LSTM). RNN and LSTM are networks

that contain loops to connect previous information to current tasks. The models with LSTM reviewed in this paper are

shown in Table 3 and Table 4.

Table 3. Comparison of LSTM-based approaches.

Author (Year) Database Data Preprocessing AUPRC

Warrick et al. (2018) PhysioNet 2018 ST algorithm, logarithmic filters 0.36

Már Þráinsson et al. (2018) PhysioNet 2018 Energy, Hjorth parameters, WPD 0.45

Kim et al. (2019) PhysioNet 2018 MFCC 0.458

ST = scattering transform; WPD = wavelet packet decomposition; MFCC = Mel-Frequency Cepstral Coefficient.

Table 4. Analysis of application of CNN+LSTM in sleep arousal.
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Author (Year) [Reference] Database Data Preprocessing Model AUPRC

Li et al. (2018) PhysioNet 2018 Signal segmentation CNN+BiLSTM 0.42

Sridhar et al. (2018) PhysioNet 2018 Feature time-series LSTM 0.573

Howe-Patterson et al. (2018) PhysioNet 2018 FFT, down-sampled DNN+BiLSTM 0.54

Warrick et al. (2019) PhysioNet 2018 - ST-LSTM 0.36

Achuth et al. (2019) Local dataset Filters, RF DNN+LSTM 0.50

Table 5 provides the models and results of the teams participating in the PhysioNet 2018 Computational Challenge in

Cardiology.

Table 5. Comparison of detection of non-apnea/hypopnea sleep arousal in PhysioNet 2018 Computational Challenge.

Author (Year) [Reference] Number of Channels Model AUPRC

Sridhar et al. (2018) 13 CNN+RNN 0.573

Howe-Patterson et al. (2018) 12 CNN+LSTM 0.54

Pourbabaee et al. (2019) 12 DNN+LSTM 0.543

Már Þráinsson et al. (2018) 13 Bi-LSTM 0.45

Li et al. (2018) 13 DNN+LSTM 0.43

Varga et al. (2018) 13 CNN 0.42

Patane et al. (2018) 5 CNN 0.40

Miller et al. (2018) 13 CNN 0.36

Warrick et al. (2018) 13 RNN 0.36

Zabihi et al. (2019) 5 CNN 0.31

Note: Submitted inside the time frame of the official phase of the 2018 PhysioNet Challenge. AUPRC is for their internal

test set and the official blind test set.

4. Automated Detection of CAP

CAP reflects the instability of sleep through EEG, which is accompanied by some dynamic events in the process of sleep

(falling asleep, conversion of different sleep periods, and awakening in sleep). It is suggested that when there are external

or internal sleep interference factors, the A1 subtype in CAP marks the brain’s efforts to continue to sleep. When sleep

becomes increasingly unstable and the brain cannot maintain continuous sleep, EEG arousal will accompany or replace

the slow activity with high amplitude. Therefore, A2 and A3 subtypes constitute the arousal of the central nervous system.

Methods for automated detection of CAP are listed in Table 6.

Table 6. Automated detection of CAP

Author(Year)
[Reference]

Database
Data
Preprocessing

Model Results

Mariani et al. (2012) 
Parma Sleep
Disorders Center

Hjorth activity; EEG
variance

Discriminant
classifier

Accuracy=84.9%

Chindhade et al. (2018) CAP Sleep
Database

Differential moving
average

Logistic
regression

AUROC=0.512;

Accuracy = 58%
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Hui et al.(2021) 
CAP Sleep
Database

- CNN
Sensitivity=80.29%;

Accuracy = 74.43%

Mendona et al.(2021)
[108]

CAP Sleep
Database

Lowpass filter LSTM

Accuracy=81.3%;

Sensitivity=73.7%;

Specificity=81.7%

5. Conclusion

Reliable diagnosis of arousal is the most essential prerequisite of sleep disorder treatment. The ‘gold standard’ for sleep

disorders was developed manually by experienced experts, which is a time consuming and costly process. Accurate

automated scoring models could assist doctors to identify medical images faster and more accurately, free doctors from

tedious work, and ultimately improve the efficiency of laboratory and home sleep diagnostic methods.

This review showed that deep learning models can complete complex tasks, and are more accurate than traditional

machine learning models. Deep learning has the powerful function of learning complex features by directly applying them

to original data without extracting any manual features. Because the changes in various physiological parameters usually

occur in a period of time before arousal, RNN and LSTM can learn the temporal relation in PSG signals. Therefore, using

deep learning methods to detect the features of sleep arousals has become a mainstream trend in the field of PSG

signals.
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