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Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells
(i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac
organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to
the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell
technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug

screening and development, and regenerative medicine.

cardiac organoid cardiac tissue engineering cardiogenesis regenerative medicine

biotechnology

| 1. Various Types of Cardiac Organoids

The approaches for generation of in vitro cardiac organoids are classified into scaffold-based and scaffold-free
methods. While biomaterials such as (natural or synthetic) hydrogels or decellularized bioscaffolds are used in the
former, the approach inducing spherical aggregation of cultured cells on an anti-adhesive environment are usually
adopted in the latter 2. The cell types used in the processes for constructing cardiac organoids are categorized
into PSC aggregates such as embryoid bodies (EBs) and differentiated cardiac cells such as CMs, ECs, and CFBs,

which are derived from either PSC differentiation or primary cells.

1.1. Cardiac Organoids in an Early Era

In 2017, utilizing the EHT technologies, the early-type cardiac organoids have been reported (Table 1) B! Mills et
al. developed a 96-well high-throughput device, called the Heart Dynamometer, each well of which has a culture
insert composed of an elliptical cell seeding area and two elastomeric posts El. Using human PSC (hPSC)-derived
cardiac cells (~70% hPSC-CMs with the rest stromal cells on day 15 in Wnt-modulated hPSC-CM differentiation)
embedded with ECM (collagen | and Matrigel) on this device, the team generated human cardiac organoids, and
successfully conducted both a functional screening of the optimal metabolic and mechanical loading conditions for
CM function and maturation . They also conducted a drug screening of 105 small molecules for identifying pro-
proliferative compounds under this system Bl Similarly, Voges et al. constructed human circular cardiac organoids
via fabrication of human ESC (hESC)-derived cardiac cells in the mold with ECM (collagen 1), and developed a
cardiac disease modeling platform such as an injury model [ Interestingly, following cryoinjury, the cardiac
organoids exhibited an endogenous regenerative response with fully functional recovery 2 weeks after injury,

indicating the previously unrecognized regenerative capabilities of immature human heart tissues.
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Table 1. Overview of cardiac organoid models in an early era (2017—-2020).
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In many cases, cardiac organoids are engineered from PSC aggregates, i.e., EBs. By combining mouse ESC-
derived EBs with the optimized ECM environment, composed of the laminin—entactin complex supplemented with
fibroblast growth factor 4, Lee et al. developed functional murine heart organoids that possessed atrium- and
ventricle-like chambers, which were similar to those of in vivo embryonic hearts &l It will be interesting and
important to confirm whether this promising system can be also applied to a human PSC-derived cardiac organoid
model. In contrast, in some cases, (terminally) differentiated cardiac cells (i.e., CMs, ECs, CFBs, etc.) are used to
form cardiac organoids as multicellular strategies 22 ysing defined cell types and ratios, i.e., 50% hiPSC-

CMs and 50% non-myocytes (at a 4:2:1 ratio of human CFBs, human umbilical vein ECs [HUVECSs], and human
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alTlyeretataddeloses taedimicnargacedisls with a triculture approach using hiPSC-CMs (from healthy subjects and
hypertrophic cardiomyopathy patients carrying the MYH7 gene mutation), human cardiac microvascular ECs and
human CFBs at a 3:5:2 ratio 1. The team successfully showed clear differences in structural and
electrophysiological properties between healthy and cardiomyopathic organoids, the latter of which exhibited an
arrhythmic phenotype. Overall, these multicellular strategies-based cardiac organoids were proven to be a useful

tool for modeling a genetic or non-genetic cardiac disease.

1.2. Latest Cardiac Organoids since 2021

Since 2021, an increased number of developed self-organizing cardiac organoids with more advanced structures
and functions have been reported (Table 2). Rossi and colleagues captured early heart organogenesis with an in
vivo-like spatiotemporal repeatability using murine embryonic organoids, termed “gastruloids”, which were formed
by mouse ESC-derived EBs 12, Using axially patterned murine gastruloids treated with a Wnt activator
(CHIR99021), and cardiogenic factors such as basic fibroblast growth factor (bFGF), vascular endothelial growth
factor-A (VEGF-A), and ascorbic acid in ultra-low attachment microplates under shaking, the team successfully
modeled the earliest stages of heart development, such as the formation of an in vivo cardiac crescent-like
structure composed of specified first heart field (FHF) and second heart field (SHF) progenitor cells. Further, the
cardiac crescent-like structure developed into an early cardiac tube-like beating tissue that was adjacent to a co-
developed primitive gut-like structure, mutually separated by a networked endocardial-like layer. Although these
cardiac structures did not further follow the in vivo developing stages such as looping and the formation of four
chambers, their system sheds light on key aspects in organogenesis through the coordinated development of
multiple tissues and organs 12, Similarly, Silva et al. generated cooperative cardiac and gut tissues originating
from different germ lineages within a single organoid model, formed by hiPSC-derived mesendoderm progenitors’
spheroids 28], These multilineage organoids showed distinct structural features and extensive tissue growth of the
developing human heart and gut, containing epithelial endoderm, complexed and segregated CM subtypes (e.g.,
MLC2v* ventricular CMs), and a TNNT2 TBX18" epicardial layer. With this unique system, the team demonstrated
that co-emergence of the two defined tissues and their mutual crosstalk promoted physiological maturation of
cardiac tissue, especially of atrial/nodal CMs, although the cardiac parts of these organoids were not

morphologically similar to the structure of the in vivo developing heart 131,

Biological scaffolds offer a better environment to cells in in vitro 3D culture. Drakhlis and colleagues generated
highly structured heart-forming organoids (HFOs) by embedding hPSC aggregates in Matrigel, followed by directed
CM differentiation simply via biphasic Wnt signaling modulation 24!, After 10 days in differentiation, the HFOs

exhibited self-assembly with distinct layers, consisting of an inner layer containing endodermal foregut-like and
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endothelial cells, an endocardial cell layer at the interface between the inner and middle layers, a middle layer
containing mostly CMs with epicardial cells, and an outer layer containing mesenchymal and liver cells. All of these
structures resembled aspects of early native heart development, supported by a crosstalk with foregut endoderm
development. Importantly, the team applied their organoid model to investigate a cardiac genetic disease, and
demonstrated that NKX2-5-knockout (KO) hESC-derived HFOs showed decreased CM adhesion and hypertrophy
with reduced tissue compaction, which were reminiscent of cardiac malformations previously observed in NKX2-5-
KO mice 221, highlighting the utility of the HFO system for the in vitro modeling of gene KO phenotypes 4], One of
the main issues to be addressed in cardiac organoid formation is that most of the existing models do not
recapitulate in vivo self-organizing cardiac architecture, such as four cardiac chambers with formation of inner
endocardial cavities. To tackle this point, Hofbauer et al. created cavity-forming cardiac organoids, termed
“cardioids”, using hPSC aggregates sequentially treated with a multitude of signaling modifiers and cardiogenic
factors, including CHIR99021, bone morphogenic protein 4 (BMP4), bFGF, Acitivin A, LY294002 (a PI3K inhibitor),
IWP2 (a Wnt inhibitor), insulin, VEGF-A, and retinoic acid (RA) in ultra-low-attachment 96-well plates pre-coated
with vitronectin or laminin 28, While the inner lining of endothelial/endocardial cells in a formed cardiac chamber-
like structure has not been observed in previous cardiac organoid models, the team revealed that cavity
morphogenesis and cardiac specification was differentially controlled by a mesodermal Wnt-BMP signaling axis,
respectively, and that the cavity formation required a Wnt-BMP signaling’s downstream transcription factor HAND1.
Cardioids contained three major cardiac cell types, i.e., CMs, endocardial cells and epicardial cells, resembling
self-organizing principles of human cardiogenesis such as chamber-like morphogenesis. Further, upon cryoinjury,
cardioids exhibited ECM accumulation, an early hallmark of both heart regenerative and pathological responses,
together with rapid recruitment of ECs and epicardial fibroblast-like cells. This implies that human cardioids
represent an excellent platform for cardiac disease modeling and future translational research 81, Another study by
Lewis-Israeli et al. also reported interesting cavity-forming cardiac organoids 2. The team adopted a three-step
Whnt signaling modulation strategy (activation/inhibition/re-activation) at specific time points on suspension hPSC-
EBs for the induction of cardiac mesoderm and epicardial cells. In combination with cardiogenic growth factors
such as BMP4 and Activin A, their relatively simple approach generated self-assembling human cardiac organoids
that contained internal chambers with multi-lineage cardiac cell types including CMs, epicardial cells/CFBs, and
endothelial/endocardial cells. Their cardiac organoids recapitulated heart field formation, developed a vasculature,
and displayed well-organized sarcomeres in CMs with robust beating and normal electrophysiological properties.
Using this platform, the team also modeled pregestational diabetes-induced congenital heart defects, and showed
that high glucose and insulin treatment resulted in decreased oxygen consumption, increased glycolysis,
arrhythmia, and irregular mitochondria distribution and lipid droplets in the organoids, indicating successful disease

modeling (7.

From 2022 onwards, the cardiac organoid’'s studies have been continuously and increasingly reported (Table 2).
Ormsted et al. developed a human multi-lineage gastruloid model by optimizing the conditions for the in vitro
development of interconnected neuro-cardiac lineages in a single organoid X8, Using their uniquely developed
elongating multi-lineage organized (EMLO) gastruloids X2, which were derived from hiPSC aggregates and

contained co-developing central and peripheral neurons and trunk mesendoderm, the team modified the procedure
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of the EMLO gastruloid-derived organoid development for facilitating human cardiogenesis. Following the initial
gastruloid induction phase in a 2D environment supplemented with CHIR99021 and bFGF for 2 days, aggregation
of dissociated cells was obtained in an anti-adherent 3D shaking culture supplemented with bFGF, hepatocyte
growth factor (HGF), and insulin-like growth factor-1 (IGF-1), the last two of which were replaced into the
cardiogenic growth factors such as VEGF-A and ascorbic acid after 48 h. EMLO gastruloid-derived cardiac
structures (EMLOCSs) emerged on day 5 onwards, and the contractile EMLOCs resembled the features of early
developing hearts, including heart tube formation, chamber-like structures, and formation of a putative outflow tract.
Of particular interest, the EMLOCs were surrounded by neurons co-developed in a spatially organized pattern,
mimicking the innervated heart. Thus, this human EMLOC model appears to be an attractive tool to dissect the
mechanisms underlying concomitant neurogenesis and cardiogenesis 18, Another study by Branco et al. focused
on the in vitro formation of pro-epicardium (PE) and foregut/liver bud, which provided crucial support to the
development of cardiac organoids containing an inner myocardium-like core and an outer epicardium-like layer 29,
With the modulation of Wnt, BMP, and RA signaling in in vitro hPSC aggregates’ differentiation, the team obtained
uniquely CM aggregates and PE septum transversum mesenchyme (STM)-posterior foregut/hepatic diverticulum
(PFH) organoids separately. After their dissociation, the singularized cells were reaggregated at a 9:1 ratio of CMs
and PE-STM-PFH cells. In the end, this co-culture approach in a 3D environment generated an epicardium—
myocardium heart organoid, comprising a WT1* epicardial-like layer that completely surrounds a TNNT2*
myocardium-like tissue, properly recapitulating the in vivo activities and functions of the PE/epicardial cells to
promote heart development and CM proliferation and maturation 2%, Lee et al. developed a human chamber-
forming cardiac organoid with a simple, optimized approach using hiPSC aggregates embedded into Matrigel
(10%) in ultra-low attachment dishes that were rotated on a shaker and a Wnt-modulated CM differentiation
protocol 21, Importantly, the team demonstrated that key functions and morphological features of the contractile
human cardiac organoids were maintained through vascularization after in vivo subcutaneous transplantation into

nude mice, paving a path to a future therapeutic transplantation of a cardiac organoid model for heart disease.

Although some of the previously reported cardiac organoid models exhibited chamber formation in the structures,
their chamber identities (i.e., atrium or ventricle, right or left) have not been cautiously examined. To address this,
Feng et al. established the two in vitro 3D CM differentiation protocols, and using these, produced atrial and
ventricular cardiac organoids, respectively 22, The team found that in hiPSC differentiation in a 2D monolayer or
3D environment, following Wnt signaling modulation (activation/inhibition), additional treatment with RA (1 uM) at
the cardiac mesoderm stage induced heart cells and organoids with predominantly atrial lineage identity in both 2D
and 3D conditions, while no addition of RA treatment induced with predominantly ventricular lineage identity. Using
these chamber-specific cardiac organoids, they further modeled a congenital heart defect such as Ebstein’s
anomaly carrying a point mutation (c.673 C > A) in the human NKX2-5 gene. They showed that the (CRISPR-
mediated) NKX2-5 mutant hiPSC line-derived organoids generated on a ventricular differentiation condition had
consistently atrial CM-like phenotypes, including higher beating rates and electrophysiological and transcriptomic
features, indicating successful recapitulation of the disease’s atrialized ventricular defects 22, Next, it will be
interesting and important to investigate whether these atrial and ventricular organoids can be further combined via

atrioventricular connection in vitro and generate coordinated atrium—ventricle organoids. Most recently, Meier and
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colleagues have reported a hPSC aggregate-derived unique cardiac organoid model, termed “epicardioid”, which
displayed self-organization of ventricular myocardium and epicardium through a bunch of signaling moderators and
growth factors, featuring RA signaling activation (23, Importantly, the epicardioids captured the main functions of the
embryonic epicardium, such as providing several cardiac progenitor sources as well as paracrine mediators driving
myocardial compaction and maturation, all of which are essential for developed self-organization and higher
maturation of myocardium but have not been achieved in previous cardiac organoid models. Further, the team
investigated the multicellular pathogenesis by successfully modeling human congenital (Noonan syndrome carrying
a PTPN11N3085+ mutation) or stress-induced cardiac hypertrophy and fibrotic remodeling. As such, they have
further expanded the role and significance of human cardiac organoids as an excellent tool to address fundamental

questions in cardiogenesis, heart disease, and drug discovery [23],

Table 2. Overview of the latest cardiac organoid models since 2021.
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Including

genetic and non-genetic heart disease modeling, drug screening/testing, and

transplantation/regenerative medicine (Figure 1). In addition to each of the cases described in the 2nd section, the

following interesting examples have been further reported.
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Figure 1. Schema of construction and applications of human cardiac organoids. (Left) Following aggregation or
directed differentiation of hPSCs, cardiac organoids are constructed by differentiation and self-organization of
aggregated hPSCs (i.e., EBSs), or direct assembly of hPSC-derived cardiac cells such as CMs, ECs and CFBs
under the 3D environment with anti-adherent culture plates, dynamic culture (shaking), and/or biological scaffolds.
(Right) The applications of cardiac organoids involve the modeling of cardiogenesis and/or heart diseases, drug
screening and development with or without targeting personalized medicine, and regenerative medicine. CFB,
cardiac fibroblast; CM, cardiomyocyte; EB, embryoid body; EC, endothelial cell; hPSC, human pluripotent stem
cell.

Varzideh et al. generated human cardiac organoids by co-culture with hPSC-derived cardiac progenitor cells,
hPSC-derived mesenchymal stem cells, and HUVECs on a Matrigel bed for three days, and transplanted them
intraperitonially into immunodeficient mice 4. After 4 weeks, the team found that the transplanted cardiac
organoids induced neovascularization with chimeric connection to host vasculature, and further promoted CM
maturation as indicated by a more developed ultrastructure, transcriptomic profile, and electronic excitability
patterns, compared to in vitro cardiac organoids and in vivo CM transplants. This indicated the successful
transplantation of cardiac organoids for the maturation of CMs towards an adult-like phenotype 24, In another

case, although not a typical cardiac organoid, Long et al. established a disease modeling platform for Duchenne
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muscular dystrophy (DMD) by generating engineered heart muscles via coculture with DMD patients’ hiPSC-
derived CMs and human fibroblasts in bovine collagen 2. More critically, after correction of DMD mutation in the
human dystrophin gene by CRISPR/Cas9 technology, the 3D engineered heart muscles exhibited restored
dystrophin expression and improved mechanical force of contraction. This study provided clear evidence that in
vitro 3D cardiac models, combined with hPSCs and genome editing, are a powerful approach to explore genetic
pathogenesis and to obtain mechanistic insights into heart disease. More recently, Mills et al. utilized their unique
cardiac organoid models BB fabricated with a minor modification such as the use of 80% hPSC-derived cardiac
cells (at a 7:3 ratio of CMs and fibroblasts) and 20% hPSC-derived ECs in mixed culture, for the screening of
cardio-protective drugs against cardiac injury and dysfunction in a SARS-CoV-2 infection setting 28. The team
identified that a cocktail of inflammatory cytokines (“cytokine storm”) induced diastolic dysfunction in the cardiac
organoids. They also demonstrated that bromodomain and extra-terminal family (BET) inhibition was a promising
therapeutic candidate to prevent COVID-19-induced heart damage, as BET inhibitors recovered dysfunction in
cardiac organoids treated with the cytokine storm or COVID-19 patient-derived serum, and rescued cardiac
dysfunction and death in SARS-CoV-2-infected K18-hACE2 mice. Consequently, this study further supported the
notion that compared to conventional 2D culture methods, human in vivo 3D cardiac organoid models are relevant

for drug testing and discovery against heart disease.
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