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Non-intrusive load monitoring (NILM) is a process of estimating operational states and power consumption of

individual appliances, which if implemented in real-time, can provide actionable feedback in terms of energy usage

and personalized recommendations to consumers. Intelligent disaggregation algorithms such as deep neural

networks can fulfill this objective if they possess high estimation accuracy and lowest generalization error. In order

to achieve these two goals, this paper presents a disaggregation algorithm based on a deep recurrent neural

network using multi-feature input space and post-processing. First, the mutual information method was used to

select electrical parameters that had the most influence on the power consumption of each target appliance.

Second, selected steady-state parameters based multi-feature input space (MFS) was used to train the 4-layered

bidirectional long short-term memory (LSTM) model for each target appliance. Finally, a post-processing technique

was used at the disaggregation stage to eliminate irrelevant predicted sequences, enhancing the classification and

estimation accuracy of the algorithm. A comprehensive evaluation was conducted on 1-Hz sampled UKDALE and

ECO datasets in a noised scenario with seen and unseen test cases. Performance evaluation showed that the

MFS-LSTM algorithm is computationally efficient, scalable, and possesses better estimation accuracy in a noised

scenario, and generalized to unseen loads as compared to benchmark algorithms. Presented results proved that

the proposed algorithm fulfills practical application requirements and can be deployed in real-time.

non-intrusive load monitoring  deep recurrent neural network  LSTM  feature space

energy disaggregation

1. Testing in Seen Scenario (Unseen Data from UKDALE
House-2 and ECO House-1,2,5)

1.1. Results with the UKDALE Dataset

Seen scenario refers to test data, which was unseen during training. We tested individual appliance models of the

kettle, microwave, dishwasher, fridge, washing machine, rice cooker, electric oven, and television on last week’s

data from two houses of the UKDALE dataset. Submeter data of six appliances were taken from house-2 of the

UKDALE dataset, whereas the electric oven and television data were obtained from house-5 of the UKDALE

dataset. Last week’s data was unused during the training which makes it unseen data during training. Trained

MFS-LSTM models for each target appliance were tested using a noised aggregated signal as input and the

algorithm’s task was to predict a clean disaggregated signal for each target appliance. Figure 1 shows the

disaggregation results of some of the target appliances. Visual inspection of Figure 1 shows that our proposed
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MFS-LSTM algorithm successfully predicted activations and energy consumption sequences of all target

appliances in a given period. The proposed algorithm also predicted some irrelevant activations, which were

successfully eliminated using our post-processing technique. Elimination of irrelevant activations improved

precision and reduced extra predicted energy, which in turn improved classification and power estimation results of

all target appliances. Numerical results of eight target appliances of UKDALE in a seen scenario are presented in

Table 1. With the help of the post-processing technique, overall F1 scores (average score of all target appliances)

improved from 0.688 to 0.976 (30% improvement) and MAE reduced from 23.541 watts to 8.999 watts on the

UKDALE dataset. Similarly, the estimation accuracy improved from 0.714 to 0.959. Although, a significant

improvement in F1-scores and MAE was observed with the use of the post-processing technique, the SAE and EA

results have slightly decreased for the kettle, microwave, and dishwasher as compared to the results without post-

processing. The reasons for the decrease in estimation accuracy and increase in signal aggregate error is due to

the overall decrease in predicted energy after eliminating irrelevant activations.

Figure 1. Seen Scenario—Disaggregation results of some target appliances from the UKDALE dataset with and

without post-processing.

Table 1. Performance evaluation of the proposed algorithm in a seen scenario based on the UKDALE datasets.

House # Appliances Without Post-Processing With Post-Processing
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

1 Kettle 0.658 2.162 0.179 0.911 0.995 1.837 0.217 0.891

1 Fridge 0.497 13.980 0.138 0.919 0.997 5.679 0.347 0.826

5 Microwave 0.535 65.090 0.028 0.986 0.719 21.450 0.515 0.743

2 Dishwasher 0.559 13.076 0.094 0.953 0.749 5.877 0.419 0.790
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House # Appliances Without Post-Processing With Post-Processing
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

1 Washing Machine 0.322 65.720 1.010 0.492 0.795 18.870 0.655 0.673

2 Electric Stove 0.886 3.519 0.623 0.688 0.981 0.240 0.005 0.997

2 Television 0.976 0.976 0.018 0.991 0.995 0.497 0.012 0.994

 Overall 0.633 23.503 0.298 0.848 0.890 7.778 0.310 0.845

2. Results with the ECO Dataset

The disaggregation results of seven appliances are shown in Table 2. These results were calculated using 1-month

data which was unseen during training. Not all the appliances were present in all six houses of the ECO dataset.

Kettle, fridge, and washing machine data were obtained from house-1, whereas dishwasher, electric stove, and

television data were retrieved from house-2 of the ECO dataset. Similarly, microwave data were obtained from

house-5 of the ECO dataset. Type-2 appliances such as the dishwasher and washing machine are very hard to

classify because of various operational cycles present during their operation. With our proposed MFS-LSTM

integrated with post-processing, type-2 appliances have successfully been classified and their power consumption

estimation resembles ground-truth consumption according to Figure 2.

Figure 2. Seen Scenario: Disaggregation results of all target appliances from the ECO dataset

Table 2. Performance evaluation of the proposed algorithm in a seen scenario based on the ECO datasets.

House # Appliances Without Post-Processing With Post-Processing
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

2 Kettle 0.961 3.906 0.004 0.998 0.981 2.353 0.043 0.978
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House # Appliances Without Post-Processing With Post-Processing
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

2 Fridge 0.838 13.667 0.170 0.915 0.995 4.039 0.121 0.939

2 Microwave 0.721 7.285 0.276 0.862 0.869 5.402 0.437 0.781

2 Dishwasher 0.745 25.736 0.024 0.988 0.891 12.346 0.288 0.856

2 Washing Machine 0.189 30.990 0.686 −0.09 0.701 5.400 0.641 0.679

2 Rice Cooker 0.299 8.900 0.699 −0.161 0.781 1.115 0.378 0.811

5 Electric Oven 0.550 68.611 0.448 0.594 0.736 28.911 0.013 0.993

5 Television 0.512 5.695 0.219 0.890 0.879 3.428 0.649 0.675

 Overall 0.688 23.541 0.361 0.714 0.976 8.999 0.367 0.959

Although our algorithm was able to classify all target appliance activations, the presence of irrelevant activations in

Figure 6 (left) indicates that the deep LSTM model learned some features of non-target appliances during training.

This can happen due to the similar looking activation profiles of type-1 and type-2 appliances. This effect was

eliminated with the use of the post-processing technique whose advantage can easily be realized with the results

shown in Table 1 and Table 2 for a seen scenario.

3. Testing in an Unseen Scenario (Unseen Data from
UKDALE House-5)

The generalization capability of our network was tested using unseen data during training. Data used for testing the

algorithms was completely unseen for the trained model. In this test case, we used entire house-5 data from the

UKDALE dataset for disaggregation and made sure that the testing period contains activations from all target

appliances. The UKDALE dataset contains 1-sec and 6-sec sampled mains and sub-metered data, therefore, we

up-sampled ground truth data to 1-sec for comparison.

Performance evaluation results of the proposed algorithm with and without post-processing in the unseen scenario

are presented in Table 3. In the unseen scenario, the post-processed MFS-LSTM algorithm achieved an overall F1-

score of 0.746, which was 54% better than without post-processing. Similarly, MAE reduced from 26.90W to

10.33W, SAE reduced from 0.782 to 0.438, and estimation accuracy (EA) improved from 0.609 to 0.781 (28%

improvement). When MAE, SAE, and EA scores of the unseen test case were compared with the seen scenario

then a visible difference in overall results was observed. One obvious reason for this difference was the different

power consumption patterns of house-5 appliances; also, %-NR was higher in house-5 (72%) as compared to the

house-2 noise ratio, which was 19%. However, overall results prove that the proposed algorithm can estimate the

power consumption of target appliances from the seen house but can also identify appliances from a completely

unseen house with unseen appliance activations.
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Table 3. Performance evaluation of the proposed algorithm in an unseen scenario based on the UKDALE dataset.

House # Appliances Without Post-Processing With Post-Processing
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

5 Kettle 0.701 14.973 0.685 0.657 0.965 1.966 0.058 0.971

5 Fridge 0.732 27.863 0.270 0.865 0.872 19.608 0.467 0.766

5 Microwave 0.242 0.546 0.504 0.748 0.317 0.392 0.828 0.586

5 Dishwasher 0.554 35.129 0.273 0.863 0.809 15.275 0.323 0.838

5 Washing Machine 0.189 30.990 2.18 −0.09 0.765 14.422 0.512 0.744

 Overall 0.484 21.900 0.782 0.609 0.746 10.333 0.438 0.781

4. Energy Contributions by Target Appliances

Apart from individual appliance evaluation, it is also necessary to analyze total energy contributions from each

target appliance. In this way, we can understand the overall performance of the algorithms when acting as a part of

the NILM system. This information is helpful to analyze algorithm performance on estimating power consumption of

composite appliances for a given period and how it is closely related to actual aggregated power consumption.

Figure 3 shows energy contributions from all target appliances in both seen and unseen test cases from the

UKDALE and ECO datasets. The first thing to notice from Figure 3 is the amount of estimated power consumption,

which is less than actual power consumption in both datasets. This happened because of the elimination of

irrelevant activations which caused extra predicted energy. Another useful insight is the difference between the

amount of estimated power consumption and actual consumption for type-2 appliances (dishwasher, washing

machine, electric oven), which is relatively higher than the type-1 appliances difference. This could have happened

due to multiple operational states of type-2 appliances which are very hard to identify as well as their power

consumption is also very difficult to estimate by the DNN models. Energy contributions for all target appliances of

the ECO dataset (Figure 1) are higher as compared to UKDALE appliances. This is due to the time span during

which energy consumption by individual appliances was computed. For the UKDALE dataset, 1-week test data was

used for evaluation. Whereas for the ECO dataset, one-month data was used for evaluation. Detailed results for

energy consumption evaluation in terms of noise-ratio, percentage of disaggregated energy, and estimation

accuracy are shown in Table 4.
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Figure 3. Energy contributions by individual appliances from (a) UKDALE House-2, (b) UKDALE House-5, (c) ECO

House-1 and 2.

Table 4. Details of energy contributions by target appliances in UKDALE and ECO datasets.

Metrics UKDALE
H-2

UKDALE
H-5

ECO
H-1 ECO H-2

Noise Ratio (%) 19.34 72.08 83.76 70.51

Actual Disaggregated Energy (%) 80.66 27.92 16.24 29.49

Predicted Energy (%) 63.15 21.57 12.99 24.53

Estimation Accuracy 0.891 0.886 0.900 0.916

As described in Section 3.3, the noise ratio refers to energy contribution by non-target appliances. In our test

cases, total energy contributions by all target appliances in said houses were 80.66%, 27.92%, 16.24%, and
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79.49% respectively. Based on the results presented in Table 4, our algorithm successfully estimated power

consumption of target appliances with an accuracy of 0.891 in UKDALE house-2, 0.886 in UKDALE house-5, 0.900

for ECO house-1, and 0.916 for ECO house-2.

5. Performance Comparison with State-of-the-Art
Disaggregation Algorithms

We compared the performance of our proposed MFS-LSTM algorithm with the neural-LSTM , denoising

autoencoder (dAE) algorithm , CNN based sequence-to-sequence algorithm CNN(S-S) , and benchmark

implementations of the factorial hidden Markov model (FHMM) algorithm, and the combinatorial optimization (CO)

algorithm  from the NILM toolkit . We chose these algorithms for comparison for various reasons. First, the

neural LSTM, dAE, and CNN(S-S) were also evaluated on the UKDALE dataset. Secondly, these algorithms were

validated on individual appliance models as we did. Thirdly,  also evaluated their approach on both seen and

unseen scenarios. Lastly, recent NILM works  have used these algorithms (CNN(S-S), CNN(S-P), neural-

LSTM) to compare their approaches. That is why these three are referred to as benchmark algorithms in the NILM

research.

UKDALE house-2 and house-5 data were used to train and test benchmark algorithms for seen and unseen test

cases. Four-month data was used for training, whereas 10-day data was used for testing. The min-max scaling

method was used to normalize the input data and individual models of five appliances were prepared for

comparison. Hardware and software specifications were the same as described in Section 3.2.

Table 5 shows training and testing times for the above-mentioned disaggregation algorithms in terms of length of

days. Many factors affect the training time of algorithms, including training samples, trainable parameters, hyper-

parameters, GPU power, and complexity of the algorithm. Considering these factors, the combinatorial optimization

(CO) algorithm has the lowest complexity, thus it is the fastest to execute . This can also be observed from the

training time of the CO algorithm from Table 5. The FHMM algorithm was the second-fastest followed by the dAE

algorithm. Training time results show that the proposed MFS-LSTM algorithm has faster execution time than the

neural-LSTM and CNN(S-S) because of the fewer parameters and relatively simple deep RNN architecture.

Table 5. Computation time comparison between disaggregation algorithms (in seconds).

Algorithms Training
(133 Days)

Testing
(10 Days)

CO 11 1.00

FHMM 166 50.63

dAE 300 0.02

Neural-LSTM 1280 0.68

[1]

[2] [3]

[4] [5]

[1][2][3]

[6][7][8]

[9]
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Algorithms Training
(133 Days)

Testing
(10 Days)

CNN (S-S) 1899 1.19

MFS-LSTM 908 0.65

Figure 4 shows the load disaggregation comparison of the MFS-LSTM with dAE, CNN(S-S), and neural-LSTM

algorithms in the seen scenario. Qualitative comparison from Figure 4 shows that the MFS-LSTM algorithm

disaggregated all target appliances and proved better as compared to the dAE, neural-LSTM, and CNN(S-S)

algorithms in terms of power estimation and states estimation accuracy. Although, all algorithms correctly estimated

operational states of target appliances. However, the dAE algorithm showed relatively poor power estimation

performance for the disaggregating kettle, fridge, and microwave. The CNN(S-S) performance was better for the

disaggregating microwave. However, for all other appliances, its performance seemed to be comparative with the

MFS-LSTM algorithm. These findings can be better understood through quantitative scores for all algorithms in

terms of the F1 score and estimation accuracy as shown in Table 6.

Figure 4. Comparison of disaggregation algorithms in the seen scenario based on the UKDALE dataset.

Table 6. Performance evaluation of disaggregation algorithms in the seen scenario.

Performance
Metrics Algorithms Kettle Fridge MicrowaveDishwasher Washing

Machine Overall

F1 CO 0.291 0.493 0.322 0.125 0.067 0.259

FHMM 0.263 0.442 0.397 0.053 0.112 0.253

dAE 0.641 0.735 0.786 0.746 0.485 0.679
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Performance
Metrics Algorithms Kettle Fridge MicrowaveDishwasher Washing

Machine Overall

Neural-
LSTM

0.961 0.791 0.774 0.419 0.152 0.619

CNN(S-S) 0.940 0.912 0.923 0.708 0.759 0.848

MFS-LSTM 0.981 0.995 0.869 0.891 0.701 0.887

MAE (Watts)

CO 61.892 53.200 59.141 71.776 121.541 73.510

FHMM 84.270 67.244 53.472 107.655 147.330 91.994

dAE 22.913 23.356 9.591 24.193 27.339 21.478

Neural-
LSTM

7.324 22.571 7.449 19.465 109.144 33.190

CNN(S-S) 5.033 13.501 7.004 26.516 8.414 12.094

MFS-LSTM 2.353 4.039 5.402 12.346 5.400 5.908

SAE

CO 0.438 0.358 0.747 0.472 0.611 0.525

FHMM 0.463 0.516 0.849 0.594 0.523 0.589

dAE 0.576 0.108 0.681 0.028 0.217 0.322

Neural-
LSTM

0.114 0.028 0.309 0.711 0.695 0.371

CNN(S-S) 0.052 0.154 0.368 0.575 0.433 0.316

MFS-LSTM 0.043 0.121 0.437 0.288 0.641 0.306

EA

CO 0.926 0.915 0.838 0.581 0.847 0.821

FHMM 0.902 0.912 0.829 0.543 0.802 0.798

dAE 0.711 0.946 0.659 0.986 0.723 0.805

Neural-
LSTM

0.943 0.940 0.845 0.645 0.614 0.797

CNN(S-S) 0.972 0.930 0.717 0.723 0.745 0.817

MFS-LSTM 0.978 0.939 0.781 0.856 0.679 0.847

As shown in Figure 4, the dAE’s F1 score was lower for the kettle as compared to all other algorithms. The neural-

LSTM performed better in terms of the F1 score except for the dishwasher and washing machine. The CNN(S-S)
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performance remained comparative with the MFS-LSTM for all target appliances. The CO and FHMM algorithms

showed lower state estimation accuracy compared to all other algorithms. When overall (average score)

performance was considered, the MFS-LSTM achieved an overall F1 score of 0.887, which was 5% better than the

CNN(S-S), 31% better than the dAE, and 43% better than the neural-LSTM and 200% better than the CO and

FHMM algorithms. Considering the MAE scores, the MFS-LSTM achieved the lowest mean absolute error for all

target appliances with an overall score of 5.908 watts. Only the CNN(S-S) scores were a bit close to the MFS-

LSTM scores, however, the overall MAE score of the MSF-LSTM was two times less than CNN (S-S), almost four

times less than the dAE, and six times less than the neural-LSTM.

Considering SAE scores, our algorithm achieved lowest SAE score of 0.043 for kettle, 0.121 for fridge, and 0.288

for dishwasher. MFS-LSTM algorithm’s consistent scores for all target appliances ensured an overall SAE score of

0.306, which was very competitive with CNN(S-S), Neural-LSTM and dAE. However, overall score of 0.306 was

71.6% lower than CO, and 92.5% lower than FHMM algorithm. When estimation accuracy scores were considered,

then dAE power estimation accuracy was higher for fridge and dishwasher, and lower for microwave and washing

machine. EA scores for Neural-LSTM algorithm were lower for multi-state appliances. However, MFS-LSTM

algorithm achieved an overall estimation accuracy of 0.847 for being consistent in disaggregating all target

appliances with high classification and power estimation accuracy.

Table 7 shows performance evaluation scores for benchmark algorithms in unseen scenario. F1, MAE, SAE, and

estimation accuracy scores again proves effectiveness of MFS-LSTM algorithm in unseen scenario compared to

benchmark algorithms. Considering F1 score, it can be observed that MFS-LSTM algorithm achieved more than

0.76 score for all target appliances except for microwave. MFS-LSTM achieved an overall score of 0.746, which

was 200% better than Neural-LSTM, 27% better than CNN(S-S) and 22% better than dAE algorithm. MAE scores

for MFS-LSTM were lower for all target appliances as compared to benchmark algorithms in unseen scenario. Our

algorithm achieved an overall score of 10.33 watt, which was six times lower than dAE and CNN(S-S), and seven

times lower than Neural-LSTM. Same trend was also observed with SAE scores, in which MFS-LSTM algorithm

achieved lowest SAE scores for all target appliances except for microwave. An overall SAE score of 0.438 for

MFS-LSTM algorithm was 38% lower than CNN(S-S), 59% lower than CO, 80% lower than FHMM and 87% lower

than Neural-LSTM.

Table 7. Performance evaluation of disaggregation algorithms in the unseen scenario.

Performance
Metrics Algorithms Kettle Fridge MicrowaveDishwasher Washing

Machine Overall

F1 CO 0.327 0.382 0.086 0.128 0.124 0.209

FHMM 0.181 0.539 0.022 0.047 0.101 0.178

dAE 0.746 0.671 0.432 0.652 0.415 0.583

Neural-
LSTM

0.331 0.364 0.216 0.165 0.113 0.238
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Performance
Metrics Algorithms Kettle Fridge MicrowaveDishwasher Washing

Machine Overall

CNN(S-S) 0.783 0.684 0.226 0.495 0.533 0.544

MFS-LSTM 0.965 0.872 0.317 0.809 0.765 0.746

MAE (Watts)

CO 113.457 89.922 77.264 81.131 77.902 87.935

FHMM 174.744 78.511 183.472 105.626 128.756 134.222

dAE 64.864 56.785 19.283 164.931 23.958 65.964

Neural-
LSTM

89.514 58.562 14.841 106.390 103.654 74.592

CNN(S-S) 54.244 23.675 21.191 113.447 115.783 65.668

MFS-LSTM 1.966 19.608 0.392 15.275 14.422 10.333

SAE

CO 0.813 0.374 0.951 0.625 0.715 0.696

FHMM 0.871 0.569 0.982 0.754 0.763 0.788

dAE 0.581 0.552 0.867 2.112 0.585 0.939

Neural-
LSTM

1.588 0.573 0.815 0.505 0.614 0.819

CNN(S-S) 0.523 0.624 0.843 0.339 0.691 0.604

MFS-LSTM 0.058 0.467 0.828 0.323 0.512 0.438

EA

CO 0.608 0.633 0.405 0.443 0.431 0.504

FHMM 0.589 0.551 0.336 0.417 0.584 0.495

dAE 0.709 0.724 0.566 −0.061 0.375 0.463

Neural-
LSTM

0.209 0.713 0.592 0.749 0.540 0.561

CNN(S-S) 0.581 0.778 0.533 0.417 0.634 0.589

MFS-LSTM 0.971 0.766 0.586 0.838 0.744 0.781

Estimation accuracy scores were also high for the MFS-LSTM with an overall score of 0.781. One noticeable factor

is the difference in scores between the MFS-LSTM and all other algorithms in the unseen scenario. The differences

shown prove the superiority of the proposed algorithm in the unseen scenario as well. Considering the noised



Non-Intrusive Load Monitoring | Encyclopedia.pub

https://encyclopedia.pub/entry/871 12/13

aggregate power signal, our multi-feature input space-based approach together with post-processing can

disaggregate target appliances with high power estimation accuracy as compared to state-of-the-art algorithms.

In accordance with Table 4 parameters, UKDALE house-2 and house-5 noise ratio was 19.34% and 72.08%,

respectively. This implies that total predictable power was 80.66% and 27.92%. In order to estimate the percentage

of predicted energy (energy contributions by all target appliances), estimation accuracy scores for all

disaggregation algorithms are shown in Table 8. Presented results also highlight the proposed algorithm’s superior

performance with an estimation accuracy of 0.994 and 0.956 in the seen and unseen test cases, respectively.

These results suggest that our proposed algorithm efficiently estimates the power consumption of all target

appliances for a given period of time.

Table 9. Evaluation of total energy contributions by target appliances in disaggregation algorithms.

Algorithms Estimation Accuracy (EA)
Seen Scenario Unseen Scenario

CO 0.907 0.544

FHMM 0.813 0.536

dAE 0.888 0.518

Neural-LSTM 0.891 0.289

CNN (S-S) 0.924 0.633

MFS-LSTM 0.964 0.856
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