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Non-intrusive load monitoring (NILM) is a process of estimating operational states and power consumption of individual

appliances, which if implemented in real-time, can provide actionable feedback in terms of energy usage and personalized

recommendations to consumers. Intelligent disaggregation algorithms such as deep neural networks can fulfill this

objective if they possess high estimation accuracy and lowest generalization error. In order to achieve these two goals,

this paper presents a disaggregation algorithm based on a deep recurrent neural network using multi-feature input space

and post-processing. First, the mutual information method was used to select electrical parameters that had the most

influence on the power consumption of each target appliance. Second, selected steady-state parameters based multi-

feature input space (MFS) was used to train the 4-layered bidirectional long short-term memory (LSTM) model for each

target appliance. Finally, a post-processing technique was used at the disaggregation stage to eliminate irrelevant

predicted sequences, enhancing the classification and estimation accuracy of the algorithm. A comprehensive evaluation

was conducted on 1-Hz sampled UKDALE and ECO datasets in a noised scenario with seen and unseen test cases.

Performance evaluation showed that the MFS-LSTM algorithm is computationally efficient, scalable, and possesses better

estimation accuracy in a noised scenario, and generalized to unseen loads as compared to benchmark algorithms.

Presented results proved that the proposed algorithm fulfills practical application requirements and can be deployed in

real-time.
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1. Testing in Seen Scenario (Unseen Data from UKDALE House-2 and ECO
House-1,2,5)

1.1. Results with the UKDALE Dataset

Seen scenario refers to test data, which was unseen during training. We tested individual appliance models of the kettle,

microwave, dishwasher, fridge, washing machine, rice cooker, electric oven, and television on last week’s data from two

houses of the UKDALE dataset. Submeter data of six appliances were taken from house-2 of the UKDALE dataset,

whereas the electric oven and television data were obtained from house-5 of the UKDALE dataset. Last week’s data was

unused during the training which makes it unseen data during training. Trained MFS-LSTM models for each target

appliance were tested using a noised aggregated signal as input and the algorithm’s task was to predict a clean

disaggregated signal for each target appliance. Figure 1 shows the disaggregation results of some of the target

appliances. Visual inspection of Figure 1 shows that our proposed MFS-LSTM algorithm successfully predicted activations

and energy consumption sequences of all target appliances in a given period. The proposed algorithm also predicted

some irrelevant activations, which were successfully eliminated using our post-processing technique. Elimination of

irrelevant activations improved precision and reduced extra predicted energy, which in turn improved classification and

power estimation results of all target appliances. Numerical results of eight target appliances of UKDALE in a seen

scenario are presented in Table 1. With the help of the post-processing technique, overall F1 scores (average score of all

target appliances) improved from 0.688 to 0.976 (30% improvement) and MAE reduced from 23.541 watts to 8.999 watts

on the UKDALE dataset. Similarly, the estimation accuracy improved from 0.714 to 0.959. Although, a significant

improvement in F1-scores and MAE was observed with the use of the post-processing technique, the SAE and EA results

have slightly decreased for the kettle, microwave, and dishwasher as compared to the results without post-processing.

The reasons for the decrease in estimation accuracy and increase in signal aggregate error is due to the overall decrease

in predicted energy after eliminating irrelevant activations.



Figure 1. Seen Scenario—Disaggregation results of some target appliances from the UKDALE dataset with and without

post-processing.

Table 1. Performance evaluation of the proposed algorithm in a seen scenario based on the UKDALE datasets.

House # Appliances
Without Post-Processing With Post-Processing

F1 MAE (W) SAE EA F1 MAE (W) SAE EA

1 Kettle 0.658 2.162 0.179 0.911 0.995 1.837 0.217 0.891

1 Fridge 0.497 13.980 0.138 0.919 0.997 5.679 0.347 0.826

5 Microwave 0.535 65.090 0.028 0.986 0.719 21.450 0.515 0.743

2 Dishwasher 0.559 13.076 0.094 0.953 0.749 5.877 0.419 0.790

1 Washing Machine 0.322 65.720 1.010 0.492 0.795 18.870 0.655 0.673

2 Electric Stove 0.886 3.519 0.623 0.688 0.981 0.240 0.005 0.997

2 Television 0.976 0.976 0.018 0.991 0.995 0.497 0.012 0.994

  Overall 0.633 23.503 0.298 0.848 0.890 7.778 0.310 0.845

2. Results with the ECO Dataset

The disaggregation results of seven appliances are shown in Table 2. These results were calculated using 1-month data

which was unseen during training. Not all the appliances were present in all six houses of the ECO dataset. Kettle, fridge,

and washing machine data were obtained from house-1, whereas dishwasher, electric stove, and television data were

retrieved from house-2 of the ECO dataset. Similarly, microwave data were obtained from house-5 of the ECO dataset.

Type-2 appliances such as the dishwasher and washing machine are very hard to classify because of various operational

cycles present during their operation. With our proposed MFS-LSTM integrated with post-processing, type-2 appliances

have successfully been classified and their power consumption estimation resembles ground-truth consumption according

to Figure 2.

Figure 2. Seen Scenario: Disaggregation results of all target appliances from the ECO dataset



Table 2. Performance evaluation of the proposed algorithm in a seen scenario based on the ECO datasets.

House # Appliances
Without Post-Processing With Post-Processing

F1 MAE (W) SAE EA F1 MAE (W) SAE EA

2 Kettle 0.961 3.906 0.004 0.998 0.981 2.353 0.043 0.978

2 Fridge 0.838 13.667 0.170 0.915 0.995 4.039 0.121 0.939

2 Microwave 0.721 7.285 0.276 0.862 0.869 5.402 0.437 0.781

2 Dishwasher 0.745 25.736 0.024 0.988 0.891 12.346 0.288 0.856

2 Washing Machine 0.189 30.990 0.686 −0.09 0.701 5.400 0.641 0.679

2 Rice Cooker 0.299 8.900 0.699 −0.161 0.781 1.115 0.378 0.811

5 Electric Oven 0.550 68.611 0.448 0.594 0.736 28.911 0.013 0.993

5 Television 0.512 5.695 0.219 0.890 0.879 3.428 0.649 0.675

  Overall 0.688 23.541 0.361 0.714 0.976 8.999 0.367 0.959

Although our algorithm was able to classify all target appliance activations, the presence of irrelevant activations in Figure

6 (left) indicates that the deep LSTM model learned some features of non-target appliances during training. This can

happen due to the similar looking activation profiles of type-1 and type-2 appliances. This effect was eliminated with the

use of the post-processing technique whose advantage can easily be realized with the results shown in Table 1 and Table

2 for a seen scenario.

3. Testing in an Unseen Scenario (Unseen Data from UKDALE House-5)

The generalization capability of our network was tested using unseen data during training. Data used for testing the

algorithms was completely unseen for the trained model. In this test case, we used entire house-5 data from the UKDALE

dataset for disaggregation and made sure that the testing period contains activations from all target appliances. The

UKDALE dataset contains 1-sec and 6-sec sampled mains and sub-metered data, therefore, we up-sampled ground truth

data to 1-sec for comparison.

Performance evaluation results of the proposed algorithm with and without post-processing in the unseen scenario are

presented in Table 3. In the unseen scenario, the post-processed MFS-LSTM algorithm achieved an overall F1-score of

0.746, which was 54% better than without post-processing. Similarly, MAE reduced from 26.90W to 10.33W, SAE reduced

from 0.782 to 0.438, and estimation accuracy (EA) improved from 0.609 to 0.781 (28% improvement). When MAE, SAE,

and EA scores of the unseen test case were compared with the seen scenario then a visible difference in overall results

was observed. One obvious reason for this difference was the different power consumption patterns of house-5

appliances; also, %-NR was higher in house-5 (72%) as compared to the house-2 noise ratio, which was 19%. However,

overall results prove that the proposed algorithm can estimate the power consumption of target appliances from the seen

house but can also identify appliances from a completely unseen house with unseen appliance activations.

Table 3. Performance evaluation of the proposed algorithm in an unseen scenario based on the UKDALE dataset.

House # Appliances
Without Post-Processing With Post-Processing

F1 MAE (W) SAE EA F1 MAE (W) SAE EA

5 Kettle 0.701 14.973 0.685 0.657 0.965 1.966 0.058 0.971

5 Fridge 0.732 27.863 0.270 0.865 0.872 19.608 0.467 0.766

5 Microwave 0.242 0.546 0.504 0.748 0.317 0.392 0.828 0.586

5 Dishwasher 0.554 35.129 0.273 0.863 0.809 15.275 0.323 0.838

5 Washing Machine 0.189 30.990 2.18 −0.09 0.765 14.422 0.512 0.744

  Overall 0.484 21.900 0.782 0.609 0.746 10.333 0.438 0.781



4. Energy Contributions by Target Appliances

Apart from individual appliance evaluation, it is also necessary to analyze total energy contributions from each target

appliance. In this way, we can understand the overall performance of the algorithms when acting as a part of the NILM

system. This information is helpful to analyze algorithm performance on estimating power consumption of composite

appliances for a given period and how it is closely related to actual aggregated power consumption.

Figure 3 shows energy contributions from all target appliances in both seen and unseen test cases from the UKDALE and

ECO datasets. The first thing to notice from Figure 3 is the amount of estimated power consumption, which is less than

actual power consumption in both datasets. This happened because of the elimination of irrelevant activations which

caused extra predicted energy. Another useful insight is the difference between the amount of estimated power

consumption and actual consumption for type-2 appliances (dishwasher, washing machine, electric oven), which is

relatively higher than the type-1 appliances difference. This could have happened due to multiple operational states of

type-2 appliances which are very hard to identify as well as their power consumption is also very difficult to estimate by

the DNN models. Energy contributions for all target appliances of the ECO dataset (Figure 1) are higher as compared to

UKDALE appliances. This is due to the time span during which energy consumption by individual appliances was

computed. For the UKDALE dataset, 1-week test data was used for evaluation. Whereas for the ECO dataset, one-month

data was used for evaluation. Detailed results for energy consumption evaluation in terms of noise-ratio, percentage of

disaggregated energy, and estimation accuracy are shown in Table 4.

Figure 3. Energy contributions by individual appliances from (a) UKDALE House-2, (b) UKDALE House-5, (c) ECO

House-1 and 2.

Table 4. Details of energy contributions by target appliances in UKDALE and ECO datasets.

Metrics UKDALE
H-2

UKDALE
H-5

ECO
H-1 ECO H-2

Noise Ratio (%) 19.34 72.08 83.76 70.51

Actual Disaggregated Energy (%) 80.66 27.92 16.24 29.49

Predicted Energy (%) 63.15 21.57 12.99 24.53

Estimation Accuracy 0.891 0.886 0.900 0.916



As described in Section 3.3, the noise ratio refers to energy contribution by non-target appliances. In our test cases, total

energy contributions by all target appliances in said houses were 80.66%, 27.92%, 16.24%, and 79.49% respectively.

Based on the results presented in Table 4, our algorithm successfully estimated power consumption of target appliances

with an accuracy of 0.891 in UKDALE house-2, 0.886 in UKDALE house-5, 0.900 for ECO house-1, and 0.916 for ECO

house-2.

5. Performance Comparison with State-of-the-Art Disaggregation
Algorithms

We compared the performance of our proposed MFS-LSTM algorithm with the neural-LSTM , denoising autoencoder

(dAE) algorithm , CNN based sequence-to-sequence algorithm CNN(S-S) , and benchmark implementations of the

factorial hidden Markov model (FHMM) algorithm, and the combinatorial optimization (CO) algorithm  from the NILM

toolkit . We chose these algorithms for comparison for various reasons. First, the neural LSTM, dAE, and CNN(S-S)

were also evaluated on the UKDALE dataset. Secondly, these algorithms were validated on individual appliance models

as we did. Thirdly,  also evaluated their approach on both seen and unseen scenarios. Lastly, recent NILM works 

 have used these algorithms (CNN(S-S), CNN(S-P), neural-LSTM) to compare their approaches. That is why these

three are referred to as benchmark algorithms in the NILM research.

UKDALE house-2 and house-5 data were used to train and test benchmark algorithms for seen and unseen test cases.

Four-month data was used for training, whereas 10-day data was used for testing. The min-max scaling method was used

to normalize the input data and individual models of five appliances were prepared for comparison. Hardware and

software specifications were the same as described in Section 3.2.

Table 5 shows training and testing times for the above-mentioned disaggregation algorithms in terms of length of days.

Many factors affect the training time of algorithms, including training samples, trainable parameters, hyper-parameters,

GPU power, and complexity of the algorithm. Considering these factors, the combinatorial optimization (CO) algorithm has

the lowest complexity, thus it is the fastest to execute . This can also be observed from the training time of the CO

algorithm from Table 5. The FHMM algorithm was the second-fastest followed by the dAE algorithm. Training time results

show that the proposed MFS-LSTM algorithm has faster execution time than the neural-LSTM and CNN(S-S) because of

the fewer parameters and relatively simple deep RNN architecture.

Table 5. Computation time comparison between disaggregation algorithms (in seconds).

Algorithms Training
(133 Days)

Testing
(10 Days)

CO 11 1.00

FHMM 166 50.63

dAE 300 0.02

Neural-LSTM 1280 0.68

CNN (S-S) 1899 1.19

MFS-LSTM 908 0.65

Figure 4 shows the load disaggregation comparison of the MFS-LSTM with dAE, CNN(S-S), and neural-LSTM algorithms

in the seen scenario. Qualitative comparison from Figure 4 shows that the MFS-LSTM algorithm disaggregated all target

appliances and proved better as compared to the dAE, neural-LSTM, and CNN(S-S) algorithms in terms of power

estimation and states estimation accuracy. Although, all algorithms correctly estimated operational states of target

appliances. However, the dAE algorithm showed relatively poor power estimation performance for the disaggregating

kettle, fridge, and microwave. The CNN(S-S) performance was better for the disaggregating microwave. However, for all

other appliances, its performance seemed to be comparative with the MFS-LSTM algorithm. These findings can be better

understood through quantitative scores for all algorithms in terms of the F1 score and estimation accuracy as shown in

Table 6.
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Figure 4. Comparison of disaggregation algorithms in the seen scenario based on the UKDALE dataset.

Table 6. Performance evaluation of disaggregation algorithms in the seen scenario.

Performance Metrics Algorithms Kettle Fridge Microwave Dishwasher Washing Machine Overall

F1

CO 0.291 0.493 0.322 0.125 0.067 0.259

FHMM 0.263 0.442 0.397 0.053 0.112 0.253

dAE 0.641 0.735 0.786 0.746 0.485 0.679

Neural-LSTM 0.961 0.791 0.774 0.419 0.152 0.619

CNN(S-S) 0.940 0.912 0.923 0.708 0.759 0.848

MFS-LSTM 0.981 0.995 0.869 0.891 0.701 0.887

MAE (Watts)

CO 61.892 53.200 59.141 71.776 121.541 73.510

FHMM 84.270 67.244 53.472 107.655 147.330 91.994

dAE 22.913 23.356 9.591 24.193 27.339 21.478

Neural-LSTM 7.324 22.571 7.449 19.465 109.144 33.190

CNN(S-S) 5.033 13.501 7.004 26.516 8.414 12.094

MFS-LSTM 2.353 4.039 5.402 12.346 5.400 5.908

SAE

CO 0.438 0.358 0.747 0.472 0.611 0.525

FHMM 0.463 0.516 0.849 0.594 0.523 0.589

dAE 0.576 0.108 0.681 0.028 0.217 0.322

Neural-LSTM 0.114 0.028 0.309 0.711 0.695 0.371

CNN(S-S) 0.052 0.154 0.368 0.575 0.433 0.316

MFS-LSTM 0.043 0.121 0.437 0.288 0.641 0.306

EA

CO 0.926 0.915 0.838 0.581 0.847 0.821

FHMM 0.902 0.912 0.829 0.543 0.802 0.798

dAE 0.711 0.946 0.659 0.986 0.723 0.805

Neural-LSTM 0.943 0.940 0.845 0.645 0.614 0.797

CNN(S-S) 0.972 0.930 0.717 0.723 0.745 0.817

MFS-LSTM 0.978 0.939 0.781 0.856 0.679 0.847

As shown in Figure 4, the dAE’s F1 score was lower for the kettle as compared to all other algorithms. The neural-LSTM

performed better in terms of the F1 score except for the dishwasher and washing machine. The CNN(S-S) performance

remained comparative with the MFS-LSTM for all target appliances. The CO and FHMM algorithms showed lower state

estimation accuracy compared to all other algorithms. When overall (average score) performance was considered, the



MFS-LSTM achieved an overall F1 score of 0.887, which was 5% better than the CNN(S-S), 31% better than the dAE,

and 43% better than the neural-LSTM and 200% better than the CO and FHMM algorithms. Considering the MAE scores,

the MFS-LSTM achieved the lowest mean absolute error for all target appliances with an overall score of 5.908 watts.

Only the CNN(S-S) scores were a bit close to the MFS-LSTM scores, however, the overall MAE score of the MSF-LSTM

was two times less than CNN (S-S), almost four times less than the dAE, and six times less than the neural-LSTM.

Considering SAE scores, our algorithm achieved lowest SAE score of 0.043 for kettle, 0.121 for fridge, and 0.288 for

dishwasher. MFS-LSTM algorithm’s consistent scores for all target appliances ensured an overall SAE score of 0.306,

which was very competitive with CNN(S-S), Neural-LSTM and dAE. However, overall score of 0.306 was 71.6% lower

than CO, and 92.5% lower than FHMM algorithm. When estimation accuracy scores were considered, then dAE power

estimation accuracy was higher for fridge and dishwasher, and lower for microwave and washing machine. EA scores for

Neural-LSTM algorithm were lower for multi-state appliances. However, MFS-LSTM algorithm achieved an overall

estimation accuracy of 0.847 for being consistent in disaggregating all target appliances with high classification and power

estimation accuracy.

Table 7 shows performance evaluation scores for benchmark algorithms in unseen scenario. F1, MAE, SAE, and

estimation accuracy scores again proves effectiveness of MFS-LSTM algorithm in unseen scenario compared to

benchmark algorithms. Considering F1 score, it can be observed that MFS-LSTM algorithm achieved more than 0.76

score for all target appliances except for microwave. MFS-LSTM achieved an overall score of 0.746, which was 200%

better than Neural-LSTM, 27% better than CNN(S-S) and 22% better than dAE algorithm. MAE scores for MFS-LSTM

were lower for all target appliances as compared to benchmark algorithms in unseen scenario. Our algorithm achieved an

overall score of 10.33 watt, which was six times lower than dAE and CNN(S-S), and seven times lower than Neural-

LSTM. Same trend was also observed with SAE scores, in which MFS-LSTM algorithm achieved lowest SAE scores for

all target appliances except for microwave. An overall SAE score of 0.438 for MFS-LSTM algorithm was 38% lower than

CNN(S-S), 59% lower than CO, 80% lower than FHMM and 87% lower than Neural-LSTM.

Table 7. Performance evaluation of disaggregation algorithms in the unseen scenario.

Performance Metrics Algorithms Kettle Fridge Microwave Dishwasher Washing Machine Overall

F1

CO 0.327 0.382 0.086 0.128 0.124 0.209

FHMM 0.181 0.539 0.022 0.047 0.101 0.178

dAE 0.746 0.671 0.432 0.652 0.415 0.583

Neural-LSTM 0.331 0.364 0.216 0.165 0.113 0.238

CNN(S-S) 0.783 0.684 0.226 0.495 0.533 0.544

MFS-LSTM 0.965 0.872 0.317 0.809 0.765 0.746

MAE (Watts)

CO 113.457 89.922 77.264 81.131 77.902 87.935

FHMM 174.744 78.511 183.472 105.626 128.756 134.222

dAE 64.864 56.785 19.283 164.931 23.958 65.964

Neural-LSTM 89.514 58.562 14.841 106.390 103.654 74.592

CNN(S-S) 54.244 23.675 21.191 113.447 115.783 65.668

MFS-LSTM 1.966 19.608 0.392 15.275 14.422 10.333

SAE

CO 0.813 0.374 0.951 0.625 0.715 0.696

FHMM 0.871 0.569 0.982 0.754 0.763 0.788

dAE 0.581 0.552 0.867 2.112 0.585 0.939

Neural-LSTM 1.588 0.573 0.815 0.505 0.614 0.819

CNN(S-S) 0.523 0.624 0.843 0.339 0.691 0.604

MFS-LSTM 0.058 0.467 0.828 0.323 0.512 0.438



Performance Metrics Algorithms Kettle Fridge Microwave Dishwasher Washing Machine Overall

EA

CO 0.608 0.633 0.405 0.443 0.431 0.504

FHMM 0.589 0.551 0.336 0.417 0.584 0.495

dAE 0.709 0.724 0.566 −0.061 0.375 0.463

Neural-LSTM 0.209 0.713 0.592 0.749 0.540 0.561

CNN(S-S) 0.581 0.778 0.533 0.417 0.634 0.589

MFS-LSTM 0.971 0.766 0.586 0.838 0.744 0.781

Estimation accuracy scores were also high for the MFS-LSTM with an overall score of 0.781. One noticeable factor is the

difference in scores between the MFS-LSTM and all other algorithms in the unseen scenario. The differences shown

prove the superiority of the proposed algorithm in the unseen scenario as well. Considering the noised aggregate power

signal, our multi-feature input space-based approach together with post-processing can disaggregate target appliances

with high power estimation accuracy as compared to state-of-the-art algorithms.

In accordance with Table 4 parameters, UKDALE house-2 and house-5 noise ratio was 19.34% and 72.08%, respectively.

This implies that total predictable power was 80.66% and 27.92%. In order to estimate the percentage of predicted energy

(energy contributions by all target appliances), estimation accuracy scores for all disaggregation algorithms are shown in

Table 8. Presented results also highlight the proposed algorithm’s superior performance with an estimation accuracy of

0.994 and 0.956 in the seen and unseen test cases, respectively. These results suggest that our proposed algorithm

efficiently estimates the power consumption of all target appliances for a given period of time.

Table 9. Evaluation of total energy contributions by target appliances in disaggregation algorithms.

Algorithms
Estimation Accuracy (EA)

Seen Scenario Unseen Scenario

CO 0.907 0.544

FHMM 0.813 0.536

dAE 0.888 0.518

Neural-LSTM 0.891 0.289

CNN (S-S) 0.924 0.633

MFS-LSTM 0.964 0.856
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