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N -methyladenosine (m A) is a prevalent and reversible post-transcriptional RNA modification that decorates tRNA,

rRNA and mRNA. Studies based on technical advances in analytical chemistry and high-throughput sequencing

methods have revealed the crucial roles of m A RNA modification in gene regulation and biological processes.

N1-methyladenosine(m1A)  RNA modification  gene expression

1. Introduction

Cellular RNAs contain more than 170 different types of chemical modifications across species .  N -

methyladenosine(m A) is a reversible methylation involving the addition of a methyl group at the  N   position of

adenosine in cellular transcripts . The methyl group can block the normal Watson–Crick base pairing of A:T or

A:U, resulting in an unstable mismatch with other nucleosides by forming Hoogsteen base pairs . The secondary

structure and RNA–protein interaction of m A-modified RNAs are also altered under physiological conditions . As

a dynamic and reversible post-transcriptional RNA modification, m A can be installed by methyltransferases,

removed by demethylases and recognized by m A-dependent RNA-binding proteins . m A RNA modification

affects RNA metabolism, including RNA structure, stability and mRNA translation, thereby regulating gene

expression and several fundamental cellular processes .

m A RNA modification has been found with high abundance in transfer RNAs (tRNAs) and ribosomal RNAs

(rRNAs) but at low levels in messenger RNAs (mRNAs) . It occurs in the tRNA of bacteria, archaea

and eukaryotes at positions 9, 14, 16, 22, 57 and 58 (m A9, m A14, m A16, m A22, m A57, and m A58,

respectively) . In cytosolic (cyt) tRNAs, m A RNA modification occurs at five different positions (9, 14, 22, 57,

and 58) . Among them, m A14 has only been identified in cyt(tRNA)  from mammals, m A22 has only been

identified in bacteria tRNAs, and m A57 has been identified in archaea existing only transiently as an intermediate

of 1-methylinosine (m I) . In mitochondria, m A9 is quite abundant and found in 14 species of mt-tRNA, while

m A58 is a minor modification with a 17% frequency found in four species of mt-tRNAs . Additionally, m A16 is

unique to human mt-tRNA , and its frequency is approximately 20% . For rRNAs, the nuclear-encoded large

subunit rRNA m A645 in 25S rRNA and m A1322 in 28S rRNA located in the peptidyl transfer center of the

ribosome are conserved in budding yeast and humans, respectively , and m A is conserved at position

947 of 16S rRNA in the mitochondrial ribosome of vertebrates . Regarding mRNAs, m A in mRNA accounts for

approximately 0.015–0.054% of all adenosines in mammalian cell lines and 0.05–0.16% in mammalian tissues 
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. m A sites are usually located near the translation start site and the first splice site of mRNA, and they are

associated with the translation of coding transcripts .

2. m A RNA-Modifying Proteins

Reversible m A methylomes in nuclear- and mitochondrial-encoded transcripts are achieved via the dynamic

regulation of m A RNA-modifying proteins (m A methyltransferases, m A demethylases and m A-dependent RNA-

binding proteins). The characterization of m A-modifying proteins is crucial for understanding the mechanisms

underlying m A-mediated gene regulation and the biological roles of m A RNA modification. To date, several m A

RNA-modifying proteins responsible for nuclear- and mitochondrial-encoded transcripts have been identified in

humans (Figure 1).
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Figure 1. m A-modifying proteins for different types of RNAs. The nuclear-encoded (top panel) and mitochondrial

(bottom panel) RNAs are reversibly methylated by m A methyltransferases (blue; dark blue represents catalytic

core of the methylase complex), demethylased by m A demethylases (pink), and bound by m A-dependent RNA-

1

1

1 1



m1A RNA Modification in Gene Expression Regulation | Encyclopedia.pub

https://encyclopedia.pub/entry/23633 4/10

binding proteins (green). A, adenosine; m A,  N -methyladenosine; TRMT, tRNA (adenine (58)-N (1))-

methyltransferase subunit; ALKBH, α-ketoglutarate-dependent dioxygenase alkB homolog; FTO, α-ketoglutarate-

dependent dioxygenase alkB homolog FTO; NML, nucleomethylin; YTHDF, YTH domain-containing family protein;

YTHDC1, YTH domain-containing protein 1; SDR5C1, 3-hydroxyacyl-CoA dehydrogenase type-2.

3. Biological Functions of m A RNA Modification

Since the discovery of m A RNA modification as a chemical modification of RNAs, efforts have been taken to

understand the functional characterization of this dynamic methylation in RNA metabolism and gene expression

regulation.

3.1. m A RNA Modification in RNA Metabolism

m A RNA modification is a pivotal regulator of RNA metabolism, including RNA structure alteration, decay and

translation (Figure 2).

Figure 2. Action mechanisms of m A in RNA metabolism. m A RNA modification regulates RNA metabolism in

multiple layers (from top to bottom: (1) m A RNA modification stabilizes tRNAs to promote translation initiation; (2)

m A-modified mRNAs interfere with Watson–Crick base-pairing with tRNA to suppress translation; (3) m A-

modified tRNAs are coupled with eEF1α to polysomes to promote translation elongation; (4) m A-modified mRNAs

are subjected to degradation by interacting with YTHDF2; (5) m A-modified mRNAs become stable when they bind

to YTHDF3). m A, N -methyladenosine; eEF1α, eukaryotic elongation factor 1-α; YTHDF, YTH domain-containing

family protein.
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The chemical properties of m A RNA modification enable changes in RNA secondary structure. For instance, m A9

and m A58 in tRNAs are required for the conformational shift of mitochondrial tRNA  and tRNA , respectively,

which contribute to the stabilization of alternative native structures . The loss of m A645 has been

shown to affect the topological structure of 28S rRNA and alter the RNA interactome . m A was also found to

favor the hairpin structure of palindromic RNA sequences, wherein m A can stably localize within apical loops .

A recent study revealed that m A RNA modification controlled RNA conformational equilibrium by blocking base-

pairing to modulate the RNA duplex .

The regulation of m A-modified mRNA decay is mediated by m A-dependent RNA-binding proteins. Limited

evidence suggests that the knockdown of YTHDF2 increases the abundance of 7 out of 8 m A-modified transcripts

and 2 out of 3 transcripts that bear only the m A but not m A (N -methyladenosine) modification . In addition to

YTHDF2, YTHDF3 overexpression has been reported to decrease the abundance and decay rate of  insulin like

growth factor 1 receptor (IGF1R) mRNA .

Translational regulation by m A modification varies among different RNA types. The m A demethylases ALKBH1

and FTO have been reported to control specific tRNA m A demethylation and decrease translation initiation .

Eukaryotic elongation factor 1-α (eEF1α) immunoprecipitation was used to reveal that m A-methylated tRNAs are

enriched in polysomes, indicating the role of m A RNA modification in translation activation . During retroviral

reverse transcription in early human immunodeficiency virus 1 (HIV-1) replication, TRMT6-mediated m A58 of

tRNA  acted as a stop site that contributed to genome integration . Further, mRNAs carrying m A undergo

translation repression because of interfered Watson–Crick base pairing .

3.2. m A RNA Modification in Biological Processes

Post-transcriptional modifications are involved in various biological processes, and recent evidence showed the

importance of m A RNA modification in this field. In a high-temperature-sensitive  Thermococcus

kodakarensis strain, decreased m A58 and melting temperature of tRNA were observed, suggesting the relevance

of m A58 and the growth ability of this strain at high temperatures . m A RNA modification was found to exhibit

its protective ability of RNAs under stress conditions. During heat shock, m A-harbouring transcripts were found to

preferentially accumulate in stress granules, subsequently resulting in a shorter time to restore the translation state

during recovery . Alkylating agents induced m A modification in RNAs and orchestrated translational

suppression by recruiting the ASCC damage repair complex (activating signal cointegrator 1 complex) . The

tRNA modification profiles of the Aplysia central nervous system showed increased m A RNA modification levels in

animals after behavioral training ; this was the first study to characterize the variable pattern of m A RNA

modification during defensive reflex-associated behavioral sensitization.  Petunia  TRMT61A catalyzed m A RNA

modification in mRNAs, and the knockdown of TRMT61A decreased the chlorophyll content and changed chlorotic

and wrinkled leaf phenotype . A recent study showed that the m A demethylase ALKBH3 functioned as a

negative regulator of ciliogenesis by removing the m A sites on  Aurora A  mRNA (a key regulator of cilia

disassembly) in mammalian cells, which was further involved in cilia-associated developmental processes in

zebrafish .
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4. m A RNA Modification in Diseases

The limited exploration of m A RNA modification as a pathological feature has mainly focused on tumor

progression (Table 1). It was reported that the knockdown of m A demethylase ALKBH3 increased the abundance

of m A RNA modification in small RNAs (< 200 nucleotides) along with suppressed nascent protein in pancreatic

cancer cells . The ALKBH3-dependent m A demethylation of macrophage colony-stimulating factor 1 (CSF1)

mRNA enhanced its mRNA stability and thus promoted the invasion of breast and ovarian cancer cells . In

addition, ALKBH3 removed the m A RNA modification of tRNA   to promote tRNA cleavage by angiogenin.

The generation of excessive tRNA-derived small RNAs may affect ribosome assembly and apoptosis in HeLa cells

. Furthermore, ALKBH3 promoter CpG island hypermethylation and transcriptional silencing were found in

Hodgkin lymphoma cells, which were identified as a potential prognostic biomarker associated with poor clinical

outcomes in patients with Hodgkin lymphoma . A recent study found that levels of tRNA m A modification were

upregulated in hepatocellular carcinoma (HCC) tissues. The TRMT6/TRMT61A complex mediated increased

m A58 levels in tRNA, which then triggered  peroxisome proliferator-activated receptor delta  (PPARδ) mRNA

translation in HCC stem cells. PPARδ promoted cholesterol biogenesis to activate the Hedgehog pathway, thereby

initiating the self-renewal of HCC stem cells .

Table 1. Dysregulation of m A RNA modification in human cancers.

ALKBH, α-ketoglutarate-dependent dioxygenase alkB homolog; TRMT, tRNA (adenine(58)-N(1))-methyltransferase

subunit; CSF-1, macrophage colony-stimulating factor 1; COL1A1, collagen α-1(I) chain; COL1A2, collagen α-2(I)

chain.
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