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The CD137 receptor is expressed by activated antigen-specific T-cells. CD137  T-cells were identified inside TILs

and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable

of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived

peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune

responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy.

CD137+ T-Cells

1. Introduction

Immunotherapy aims to re-educate the patient’s immune system to recognize and fight cancer cells. The existence

of T-cells with a potential antitumor effect has laid the foundation for most of the current approaches of

immunotherapy. In fact, the use of therapies such as immune checkpoint inhibitors (ICIs), DC vaccines, and

adoptive T-cell transfer (ACT) finally relies on the presence of a population of effector T-cells that is capable of

killing tumor cells. These immune-based drugs thus aim to unleash this population from different regulatory

constraints such as T-cell exhaustion or the impossibility of reaching cancer cells, to subsequently limit tumor

growth and progression. As a confirmation, the accumulation of tumor-infiltrating lymphocytes (TILs) correlates with

a better clinical outcome and an improved survival in most tumor models , indicating their

importance in predicting patients response to anticancer therapies. Nevertheless, the composition of TILs is

heterogeneous  and it still remains challenging to identify the real population of naturally occurring antitumor T-

cells . Therefore, this review will discuss the emerging role of the CD137  T-cells population as the main effector

population activated against cancer cells with all the possible implications for the future of immunotherapy.

2. CD137: The Receptor

The CD137 receptor (4-1BB, TNFRSF9) is a member of the tumor necrosis factor receptors (TNFR) family and

was characterized as an inducible costimulatory receptor on T-cells, together with its ligand (CD137L, 4-1BBL),

both in human and mice . CD137 was initially described as a surface marker expressed by activated T-cells, with

an in vitro peak expression 48 h after the primary T-cell activation signal and a decline starting from day 4–5 

. In vivo, its expression upon activation turned out to happen even earlier, starting indeed at 12h post-

immunization . Both CD4  and CD8  T-cells are able to upregulate CD137, even if its expression on CD8  T-

cells is earlier and higher .
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However, CD137 receptor is not a specific marker for T-cells, since it can be expressed, even if to a smaller extent,

also by dendritic cells (DCs), monocytes, natural killer (NK) cells, eosinophils, and microglia . On the other side,

CD137L is expressed by activated antigen presenting cells (APC) as macrophages, DCs, and B-cells 

. Therefore, it is reliable to suppose that the engagement between CD137 and its ligand is part of the complex

pathways of interactions between APCs and T-cells.

Similarly to other members of the TNFR family, the CD137 receptor relies on TRAFs proteins to build its signaling

. The binding of both CD137L  and agonistic antibodies  results in a quick recruitment of TRAF1 and

TRAF2 to the receptor. The consequent TRAF-mediated activation of NF-kB and MAPK intracellular signaling,

leads to T-cell division and proliferation, an increased cell survival and enhanced effector functions in both CD4

and CD8  T-cells . As for CD137 expression, also TRAF1 expression is induced by T-cell activation, confirming

that the CD137-induced signalosome is required for cytotoxic T-cells (CTL) expansion and for the boosting of

effector functions . In fact, a number of mice experiments proved that CD137 stimulation is able to increase T-

cell proliferation and cytokine production . Consistently, in absence of the CD28 signal, T-cells treated with an

anti-CD3 and CD137L can proliferate and produce interleukin 2 (IL-2) to a similar extent of those treated with the

combination of anti-CD3 and anti-CD28, but just in the presence of a consistent antigen stimulation .

This evidence was one of the starting points to get to the notion that CD137 identifies those T-cells that are

activated against a specific antigen. The CD137L stimulation of human CD8  T-cells leads to the expansion of this

T-cells subset which is followed by an increase of effector molecules such as granzyme A, interferon ɣ (IFN-ɣ),

perforin, and different cytokines, driving CD8  memory T-cells toward a differentiated effector phenotype . In

addition, the CD137 receptor seems to have a strong and prevalent role in increasing T-cell survival by preventing

activation-induced T-cell death  and this appears to be in line with the physiological timing of the CD137

signal that is subsequent to the TCR and CD28 mediated signals. The BIM downregulation and the induction of

Bcl-XL and Bfl-1 were pointed out as responsible for the inhibition of the activation-induced cell death, after the

CD137 engagement . Further studies also showed that the CD137 engagement is able to stimulate the

mitochondrial metabolism in order to increase T-cell respiratory capacities  and to induce DNA demethylation

in CD8  T-cells main genes and chromatin reprogramming . As above mentioned, different studies highlighted a

preferential role of CD137 in CD8  T cells rather than in CD4  T cells, even if it can be induced on both the T-cell

subsets, including CD4  regulatory T-cells (Tregs) . However, the effective function of CD137 signaling on CD4

T-cells is still unclear and may thus not be as physiologically relevant as for CD8  T cells .As confirmation, mice

deficient for CD137 show an impaired antiviral response mediated by CD8  T cells . Similarly, mice

deficient for CD137L that were adoptively transferred with OT-1 derived CD8  T-cells, showed a marked reduction

of these OVA-specific T-cells in both the late primary response and the secondary expansion to OVA/LPS .

Moreover, when anti-CD137 monoclonal antibodies or CD137L injections were tested in cancer therapy, a

significant benefit in terms of antitumor response was noticed . When CD137

was targeted by in vivo treatments with an agonistic anti-CD137 monoclonal antibody, it resulted in an increased

effect on CD8  T-cells expansion and activation with just a modest effect on CD4  T-cells, thus confirming that in

vivo its signal affects predominantly this subset of T-cells .
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Finally, as evidence about the importance of the CD137 receptor in marking those T-cells that were activated to

eliminate a non-self-antigen, it was reported that the CD137 resulted specifically upregulated after an alloantigen

stimulation and, upon CD137 depletion, it was possible to remove alloreactive T-cells during hematopoietic

transplantation .

An important step forward in the field of tumor immunology, was made when CD137  T-cells were clearly identified

as those cells that were terminally differentiated and antigen-specific effector cells, regardless of the antigen

specificity . This allowed the isolation of those cells that were considered the real effector cells activated against

tumor antigens .

3. CD137  T-Cells: The Natural Tumor-Specific Population

The discovery that CD137 is expressed by most of activated and antigen-specific (both against viral and tumor

antigens) CD8  T-cells, allowed the isolation of tumor-specific effector T-cells from blood, without knowing the

immunogenic epitopes or the MHC-restriction complex. These cells, even if present at low frequencies, were able

to kill antigen-expressing cancer cells upon expansion, although this required an ex vivo restimulation with the

defined tumor antigen .

This evidence raised a strong interest in investigating this cell repertoire also inside the tumor. In fact, the tumor

microenvironment (TME) is enriched for T-cells specific for defined antigens with cytolytic ability against cancer

cells . In addition, even if defined antigens are known for different tumor models, exomic sequencing data in

different solid tumors proved that cancer cells express a various and heterogeneous set of mutated neo-antigens

that are characteristic for every single patient and thus can be recognized by TILs that are able to exert an

antitumor response . As confirmation, T-cell receptors (TCRs) isolated from CD137  TILs, showed a reactivity

against various mutations of tumor-derived antigens . Given this evidence, the possibility of identifying a tumor-

specific T effector population inside the TME without the knowledge of the antigen epitopes seemed very

promising.

Initial evidence proved that CD137 is strongly expressed by TILs if compared to spleen- or lymph nodes-derived T-

cells and its expression is induced by hypoxia through hypoxia-inducible factor 1α .

Recently, Ye et al. decided to investigate the CD137  T-cells population in ovarian cancer patients, comparing three

different locations in which this subset of cells could be found: TME, ascites, and peripheral blood . They

demonstrated that CD137  T-cells are present in small percentages in the peripheral blood and, to a larger extent,

in ascites and even more inside the tumor, showing a progressive hierarchy with the T-cells in a closer proximity to

cancer cells expressing the higher percentages of CD137 and then decreasing gradually toward the periphery.

Overnight incubation with autologous cancer cells largely increased the percentage of CD137  T-cells and their

ability of producing a consistent amount of IFN-γ. Additionally, CD137 expression was further increased when T-

cell lines with a known antigen specificity were used. Most importantly, when human TILs and tumor cells where

transferred into immunodeficient mice, only CD137  T-cells (but not CD137  T-cells) were able to inhibit tumor
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growth . Thus, they demonstrated that CD137  T-cells are those cells that naturally show the real antitumor

reactivity, confirming also that they represent a subset of newly recruited antitumor T-effector cells, being CD137

expression a rapid and transient event upon specific activation. Overall, this study proposed a novel method to

isolate and expand tumor reactive TILs that can be used for adoptive T-cell transfer approaches; the vast

heterogeneity of TCRs is indeed conserved with this strategy thus helping to prevent the escape of those tumor

cells that do not express a determined antigen or those that express mutated antigens.

These findings suggested the potential role of CD137  T-cells as key contributors of the antitumor immune

responses and thus as potential determiners of the success of immunotherapies as well as novel protagonists of

immune-based approaches (Figure 1).

Figure 1. Schematic representation of CD137  T-cell activation as a result of priming by TAA-carrying activated

APC. The consequence of the CD137/CD137-L engagement is a marked increase in cell survival, followed by an

increased proliferation, cytokine production, and effector molecules release. Then, possible roles of CD137  T-cells

population in the present and future of immunotherapy. APC, antigen presenting cell; TAA, tumor-associated

antigens; MHC, major histocompatibility complex; ACT, adoptive cell therapy; moAb, monoclonal antibodies; ICIs,

immune checkpoint inhibitors; CAR, chimeric antigen receptor.4. CD137  T-cells can predict cancer patients’

response to immune-based therapies.

Despite these clear results showing the importance of the CD137  T-cell population in eliciting an antitumor

response, evidence about the role of these T-cells in oncologic patients have only recently emerged (Table 1).
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Table 1. Summary of the results showing the power of CD137  T-cells population as a biomarker able to predict

and monitor patients’ response to different immune-based therapies in various tumor models.

In 2020, for the first time we provided evidence about the importance of CD137  T-cells in determining the outcome

of metastatic non-small cells lung cancer (NSCLC) patients undergoing immunotherapies . Patients that were

positive for the autoantibody IgM-Rheumatoid Factor (IgM-RF) showed indeed a reduced frequency of CD137  T-

cells in peripheral blood and an increased tendency to develop an early progression, in addition to a markedly

reduced progression-free survival (PFS) and overall survival (OS) after the anti-PD-1 treatment . In addition, to

confirm the importance of this population as an independent prognostic factor, it was reported how a higher

percentage of CD137  T-cells in peripheral blood mononuclear cells (PBMC) at baseline, was alone associated

with a prolonged OS as well as PFS of patients in treatment with an anti-PD-1 ICI .

In addition, in 2018 it was proven that, in metastatic renal clear cell carcinoma (mRCCC) patients undergoing the

anti-PD-1 treatment, the percentage of CD137  T-cells decreased during tumor progression . Moreover, patients

pretreated with Tyrosin-kinase inhibitor Pazopanib, showed a robust increase in DC activation profile and a

subsequent increase of the frequency of CD137  T-cells when compared to Sunitinib . Still in mRCCC, Zizzari et

al. demonstrated that CD137  T-cells were positively associated with patients response to TKI . In fact,

responder patients showed a markedly higher percentage of this T-cell subset when compared to non-responders.

These results highlight the importance of this T-cell subset in oncologic patients response to therapies that require,

even if in an indirect way, the immune system’s ability of killing tumor cells. In this scenario, the percentage of this

population in peripheral blood (and most likely also in other districts as draining lymph nodes and TME) could serve

as a possible biomarker able to identify those patients that would benefit the most from a determinate treatment

that relies on T-cells as final effectors.

Finally, in 2020, indirect evidence of the CD137  T-cells power in determining a prolonged survival for cancer

patients came from a study on melanoma patients where it was shown that TNFRSF9 low methylation levels and

the subsequent increased mRNA expression at the tumor site, that was prevalently identified inside T-cells,

correlated with a better OS of patients as well as a better PFS and response to the anti-PD-1 treatment .

+

Cancer Type Treatment Results References

Metastatic
NSCLC Anti-PD-1 ICIs

Higher percentages of CD137  T-cells in PBMC
predicted a prolonged patients’ OS and PFS.

[67,68] Ugolini
et al., 2020

Metastatic
RCCC

Anti-VEGF-R TKIs
and anti-PD-1

ICIS

Percentage of CD137  T-cells in PBMC decreased
during patients’ progression.

[69] Zizzari et
al., 2018

Metastatic
RCCC TKIs

Higher percentages of CD137  T-cells in PBMC
were associated with responder patients.

[70] Zizzari et
al., 2020

Metastatic
Melanoma Anti-PD-1 ICIS

CD137 mRNA levels at the tumor site were
positively associated with a prolonged OS, PFS,

and a better response to the therapy.

[71] Fröhlich et
al., 2020
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TNFRSF9 mRNA expression positively correlated also with the frequency of effector and memory tumor infiltrating

lymphocytes, while it was inversely correlated with the frequency of naïve tumor infiltrating lymphocytes . As a

confirmation of its power as biomarker for the identification of activated effector T-cells, TNFRSF9 mRNA

expression levels positively correlated with an increased IFN-γ signature .

These results indicate the potential role of this population as the driver of a successful immunotherapy, thus

suggesting the possibility of investigating its presence in patients before undergoing immune-based treatments. In

fact, a reduction in its frequency could account for the impossibility of getting a complete or even partial response

at least in part of the oncologic patients. In this scenario, strategies aimed at increasing their numbers could be

considered at an initial stage, in order to make the patient more prone to efficiently receive an immunotherapeutic

treatment.
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