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The monitoring of surface-water quality followed by water-quality modeling and analysis are essential for generating

effective strategies in surface-water-resource management. However, worldwide, particularly in developing countries,

water-quality studies are limited due to the lack of a complete and reliable dataset of surface-water-quality variables.
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1. Introduction

Monitoring, modeling and management represent the three foundations for building an effective pollution-control strategy

. They strictly depend on each other: there is no management without modeling and no modeling without exhaustive

monitoring. Therefore, any problem related to data collection is then reflected in the performance of the modeling and

management phases. Consequently, it is crucial first to acknowledge what improvement would result if all the available

data could be well exploited .

The issue of missing data frequently occurs in environmental fields due to sensor failures, weak or inexistent strategy for

coordinating monitoring campaigns, a change in the measurement site, in data collectors or to the equipment over time,

budget issues . Such water-quality data problem is particularly significant in developing countries where monitoring

stations and monitoring frequency is scarce, and the percentage of missing data is exceptionally high .

It is possible to deal with missing data in two different ways: deletion or imputation . Deletion consists of removing the

observations or the features characterized by missing values, while imputation involves reconstructing missing data.

Deletion is typically the default method adopted since it is rapid and straightforward . However, in several fields, there

are many examples in which such a technique presented some restrictions. It reduces the dataset size and may lead to

biased results and a loss of critical information, mainly when a high percentage of missing values characterizes the

dataset. Among the most straightforward imputation techniques, there are mean imputation and linear interpolation (which

rely only on the available time-series data to perform the imputation), arithmetic, and weighted averaging. However, these

techniques have shown poor performance when the dataset is characterized by a significant length of the missing

sequence .

Another common approach used to fill in missing data, which is part of the univariate imputation methods, is to use

information from the neighboring monitoring stations. The inverse distance weight (IDW) is a technique that has been

successfully adopted for environmental datasets, particularly for meteorological variables .

In the last decade, progressively more advanced techniques have been adopted to reconstruct environmental time series

. Among them, machine-learning techniques that can handle multivariate inputs are the most widely used. Aguilera

et al.  adopted three different methods (spatio-temporal kriging, multiple imputations by chained equations through

predictive mean matching and random forest) to reconstruct daily precipitation time series characterized by extreme

missingness (>90%). They found that spatio-temporal kriging simulates rainfall distribution under missing chronological

patterns more reliably than the other two techniques. Sattari et al.  provided an in-depth comparison of ten different

statistical and machine-learning models to impute monthly precipitation data. Computational results showed that

arithmetic averaging, multiple linear regressors and non-linear iterative partial least squares perform best among the

classical statistical methods. The multiple imputation technique performed best when rainfall data from more than one

dependent station were considered. In addition, Barrios et al.  compared the performance of five models for filling

monthly precipitation records, finding that artificial neural network, multiple linear regression and IDW showed the best

performance.
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Most of the imputation works presented in the scientific literature refer to meteorological variables and, sometimes, to

hydrologic variables like streamflow . To our knowledge, there are few works related to the imputation of water-quality

data. Tabari and Talaee  employed artificial neural networks to successfully recover missing values of 13 water-quality

parameters at five monitoring stations in the South of Iran. Srebotnjak et al.  adopted hot-deck imputation to improve a

country-level water quality index, calculated by considering dissolved oxygen, electrical conductivity, pH, total phosphorus

and total nitrogen. Ratolojanahary et al.  assessed for the first time the problem of high omission rate (even higher than

80%) in a water-quality dataset by adopting four machine-learning models (random forest, boosted regression trees, k-

nearest neighbors and support vector regression). However, there is no comprehensive evaluation of different types of

imputation models in the context of water-quality data characterized by a high percentage of incompleteness.

2. Water-Quality Data Imputation with a High Percentage of Missing
Values: A Machine Learning Approach. Take Uruguay as An Example

Effective water-resource management requires the analysis of a large number of water-quality information over space and

time. However, in many parts of the world, particularly in developing countries, the monitoring of water-quality variables is

usually characterized by few monitoring stations over the territory, where observations are recorded with a low frequency

and are characterized by an important percentage of missing data. Therefore, in this study, we evaluated the performance

of several statistical and machine-learning techniques (univariate and multivariate) in imputing a water-quality dataset

characterized by eight water quality variables measured at six monitoring stations. Particularly, we aimed to augment the

water-quality dataset, from bi-monthly to monthly frequency. The percentage of missing values ranges between 50% and

70% (high missingness percentage), and the water-quality variables are characterized by a high temporal and spatial

distribution. The study area considered was one of the most critical Uruguayan watersheds, Santa Lucía Chico, since it

provides water to more than 60% of the national population. This was an interesting study area to analyze since it is a

mixed lotic and lentic system and the six monitoring stations are located along the mainstream (SLC01, SLC02 and PS01)

and in the reservoir (PS03, PS04 and PS02). In this way, it was appealing to assess the performance of several models in

these two different surface-water bodies.

There are few related works on the imputation of water-quality data, and they are relatively recent. In 2012, Srebotnjak et

al.  showed that hot-deck imputation can improve geographical coverage of a country-level water quality index,

calculated considering dissolved oxygen, electrical conductivity, pH, total phosphorus and total nitrogen. This water-quality

index is a composite indicator to track water quality over time and space, easily interpretable since it varies from 0 to 100.

Still, it does not allow a detailed analysis of each water-quality variable used to calculate it. Therefore, this type of index

does not allow us to answer scientific questions such as which compounds are significant indicators for specific land use

categories or the spatio-temporal behavior of a particular problematic compound in a particular area of study. To overcome

these limitations, we decided to directly impute each water-quality variable and not a global index, which allows us to use

the imputed data for more advanced analyses.

In 2015, Tabari and Talaee  obtained acceptable results (RMSE ranges between 0.016 and 4475) in imputing a large

dataset of water-quality information (13 variables) measured, with a monthly frequency, at five monitoring sites along the

Maroon River (Southwest of Iran). It should be noted that this study has already adopted the concept of helper variables

to improve the imputation process based on the correlations among water-quality variables. The correlation between EC
and Turb that we used in our analysis is confirmed in this study. In Tabari and Talaee , the results were insufficient for

EC, Turb and total dissolved solids (TDS) at all monitoring stations, showing RMSE values between 100 and higher than

4000. They employed only two artificial neural networks as imputation models: multilayer perceptron and radial bias

function. In our study, we improved such results using more imputation techniques and founding that SVR model shows

better performance for EC and Turb.

In 2019, Ratolojanahary et al.  tackled for the very first time the problem of high rate missingness (higher than 80%) in a

water-quality dataset of a drinking water well employing four machine learning models (RF, KNNR, SVR and boosted

regression trees, similar to our AB). Their outcomes showed that SVR provides the best performance (notably in terms of

average prediction error). However, this study does not introduce the temporal dimension into the imputation process,

and, therefore, temporal variability of water-quality parameters is not considered a challenge. Spatial variability is also not

addressed, as the authors analyzed water well. These aspects are included in our study. Furthermore, we confirm that the

performance of SVR is better than AB and KNNR in the imputation of water quality data.

It is also important to note that our work pioneered the use of IDW for water-quality data imputation, and this method

performed the best among all the methods analyzed. Some recent works proposed using IDW to interpolate water quality
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in scenarios where spatial variability may be negligible, as in the case of lakes  or where temporal variability is low, as

in the case of groundwater .

Some of the correlations found in our work were also reported in previous studies in the same study area : a

robust correlation among nitrogen compounds, in its dissolved and particle-bound form; a strong inverse correlation

between by T  and DO.

3. Conclusions

We tackled the challenge of data imputation in a multivariate water-quality dataset characterized by a high percentage of

missing data (between 50% and 70%). In particular, the variables T , EC, pH, DO, TN, NO , NO  and Turb of six

monitoring stations located along the Santa Lucía Chico river (Uruguay) were considered for this study. Adopting a multi-

model approach was crucial since the best model for imputing any water-quality variable does not exist. The statistical

and machine-learning models implemented were IDW, RFR, RR, BR, AB, HR, SVR and KNNR.

The imputation outcomes were overall adequate. More than 76% of the imputed data can be considered “satisfactory”

(NSE > 0.45). This was validated by calculating PBIAS (>96% of the imputed data is “satisfactory”) and KGE (all the

imputations are considered “good”). It is interesting to notice that the performance is always remarkable at the three

monitoring stations located in the Paso Severino reservoir, while they may be “unsatisfactory” at some monitoring stations

located along the Santa Lucía Chico river (upstream the reservoir). Among the implemented models, IDW was chosen as

the best model 17 times since it is the only model that considers the temporal and spatial variability that characterizes the

variables under study.

We pave the path to future water-quality research in the watershed under study (e.g., implementation of reliable modeling

tools, water-quality prediction and scenario analysis). Hopefully, the results obtained will help water managers and

researchers worldwide make the most of existing water-quality data to improve modeling and generate effective pollution-

control strategies.

Our current results are promising, but we believe that it is possible to improve the present methodology by integrating

physical knowledge that considers the spatial information of the available water-quality data. Our future work intends to

transform the current approach, based on machine learning, into a hybrid method where the data-driven techniques

incorporate physical aspects during their training.
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