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Two-dimensional quantum billiards are one of the most important paradigms for exploring the connection between

quantum and classical worlds. Researchers are mainly focused on nonintegrable and irregular shapes to understand the

quantum characteristics of chaotic billiards. The emergence of the scarred modes relevant to unstable periodic orbits

(POs) is one intriguing finding in nonintegrable quantum billiards. On the other hand, stable POs are abundant in

integrable billiards. The quantum wavefunctions associated with stable POs have been shown to play a key role in ballistic

transport. 
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1. Introduction

Harmonic oscillators are universally recognized as one of the most important paradigms for exploring quantum-classical

correspondence. Under the paraxial approximation, the transverse part of the wave equation for spherical cavities can be

mathematically analogous to the Schrödinger equation for two-dimensional (2D) harmonic oscillators . Accordingly,

various high-order transverse modes can be generated with the specially designed spherical laser cavities to analogously

manifest the quantum wave function. The eigenfunctions of 2D quantum harmonic oscillators can be solved as the

Hermite–Gaussian (HG) functions in rectangular coordinates or the Laguerre–Gaussian (LG) functions in polar

coordinates . The selectively diode-end-pumped solid-state lasers have been widely employed to generate both HG and

LG functions from ground order to very high order . Additionally, the same laser technology was exploited to

generate the so-called geometric modes in the degenerate cavities, which clearly revealed the ray-wave duality in the

spatial domain . In mesoscopic quantum phenomena, the degeneracy of energy levels was found to play an important

role in the connection between the conductance fluctuation and the classical periodic orbits (POs) . Similarly, the

emergence of geometric modes was verified to originate from the degeneracy of eigenfrequencies in laser resonators 

. The Lissajous stationary modes are one of the most remarkable geometric modes generated from the astigmatic laser

cavities. Theoretically, the Schrödinger coherent state for the one-dimensional (1D) harmonic oscillator can be

straightforwardly extended to the 2D harmonic oscillator to obtain the stationary coherent states that exactly spatially

correspond to the Lissajous figures.

Additionally, 2D quantum billiards are another pedagogical model for comprehending the connection between quantum

and classical worlds. Various dynamical features can be straightforwardly studied from the model of quantum billiards by

changing the geometry. One main branch of research on billiard systems is focused on nonintegrable and irregular

shapes to understand the characteristics in the field of quantum chaos . Classically, the chaotic

nature renders all the orbits in a chaotic system as being unstable. An interesting finding in nonintegrable quantum

billiards is the emergence of eigenstates on unstable POs, called scarred modes . Quantum scars have been

searched and analyzed in mesoscopic systems . Due to the similarity of the equations for

different types of waves, scars have been observed in microwaves . Quantum scars have not only

been confirmed from the accumulation of spin–orbit-coupled atomic gases for specific energies  but also generated in

the 2D harmonic oscillators with local impurities . Furthermore, quantum many-body scars have been

hypothesized to cause weak ergodicity breaking and the unexpectedly slow thermalization of cold atoms 

. The similar phenomenon dynamical scar has also been experimentally found in a driven fraction system .

Nevertheless, the overall number of scarred modes is quite few. The eigenstates in nonintegrable billiards are mostly

widely distributed in the coordinate space , often exhibiting common features of quasi-linear ridge structures .

Compared with non-integrable billiards, stable POs are generally abundant in integrable billiards with symmetrical shapes

. The quantum wavefunctions associated with stable POs have

been found to play a key role in ballistic transport , quantum pointer states and decoherence 

, universal conductance fluctuations , and chaos-assisted quantum tunneling

. Ballistic transport means that the mean free path of the particle is significantly longer than the size of

the medium through which the particle travels. In addition to microwave cavities, quantum billiards can be analogously

explored with the wave systems including optical fibers , optical resonators ,

vibrating plates and acoustic waves , and liquid surface waves .
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Noticeably, it has been confirmed that the vertical-cavity surface-emitting lasers (VCSELs) with a unique longitudinal wave

vector k  and the lateral oxide confinements can be modeled as 2D wave billiards with hard walls. To be brief, theoretical

research on quantum billiards was intensively performed in the last century, and later, some researchers’ interests shifted

to applied fields such as laser resonators.

2. Quantum Billiards

The quantum analogy of a classical billiard is called a quantum billiard. For the classical billiard with the 2D region

denoted by R, the corresponding potential in quantum mechanics is given as

(1)

The time-independent Schrödinger equation for the potential defined in Equation (1) can be expressed as the Helmholtz

equation:

(2)

where 𝑘=(2𝜇𝐸/ℏ)1/2; E and 𝜇 are energy and mass of the particle, and ℏ is the reduced Planck’s constant. The

homogeneous Dirichlet boundary condition is given due to the condition of 𝑉=∞. To be brief, quantum billiard is defined

using the Helmholtz equation in R with the Dirichlet boundary condition.

3. Square Billiard

The spatial distributions of quantum wave functions corresponding to classical POs  have been an intriguing

phenomenon in open ballistic cavities. Semiclassical PO theory has been used to explain the scarred wave functions in

chaotic billiards . Nevertheless, it is pedagogically useful for comprehending the quantum-classical

correspondence in mesoscopic physics to fully develop the connection between quantum eigenfunctions and classical

POs in integrable systems. One of the simplest integrable billiards is the square billiard . In a square billiard, each

family of POs can be specified with three parameters (p, q, and ϕ), where p and q are two positive integers describing the

number of reflections with the horizontal and vertical boundaries, and ϕ (−π < ϕ < π) is associated with the wall positions

of specular reflection points . Alternatively, the parameter ϕ may also be linked to the starting point of the classical

particle. Figure 1 depicts some examples for POs in a square billiard. The trajectory can be seen to constitute a single,

non-repeated orbit when p and q are co-prime. When p and q have a common factor m, the trajectory is an orbit family

that corresponds to m primitive POs with indices of (p/m, q/m, and ϕ/m).

Figure 1. Some examples of orbit families in square billiard.

For a square billiard with the region in 0≤𝑥,𝑦≤𝑎, the eigenfunctions are given as
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(3)

where the quantum numbers m and n are positive integers. The eigenvalues corresponding to the eigenfunctions

𝜓𝑚,𝑛(𝑥,𝑦) are given using 𝐸(𝑚,𝑛)=ℏ2𝑘2𝑚,𝑛/(2𝜇), where the wave numbers 𝑘𝑚,𝑛 are expressed as

(4)

Figure 2 shows the wave patterns |𝜓𝑚,𝑛(𝑥,𝑦)|2 for several sets of quantum numbers (𝑚,𝑛).

From Bohr’s correspondence principle, the classical limit of a quantum system should be asymptotically obtained when

the quantum numbers are sufficiently large. However, the conventional eigenfunctions of a square billiard cannot reveal

the features of classical POs no matter how large the quantum numbers are. The quantum states relevant to the classical

POs have been verified to be the superpositions of the nearly degenerate eigenstates. For a given central order (𝑚𝑜,𝑛𝑜),

the nearly degenerate condition can be derived from the differential of the eigenvalue function 𝐸(𝑚,𝑛) given as

𝑑𝐸(𝑚,𝑛)|𝑚𝑜,𝑛𝑜=(∂𝐸/∂𝑚|𝑚𝑜,𝑛𝑜)𝑑𝑚+(∂𝐸/∂𝑛|𝑚𝑜,𝑛𝑜)𝑑𝑛(5)

Figure 2. Wave patterns for eigenstates |𝜓𝑚,𝑛(𝑥,𝑦)|2 for several sets of quantum numbers (𝑚,𝑛) of square billiard.

Setting 𝑑𝐸(𝑚,𝑛)|𝑚𝑜,𝑛𝑜=0 leads the tangent of the constant-energy contour as

−𝑑𝑛𝑑𝑚=∂𝐸/∂𝑚|𝑚𝑜,𝑛𝑜∂𝐸/∂𝑛|𝑚𝑜,𝑛𝑜=𝑚𝑜𝑛𝑜(6)

Since both quantum numbers (𝑚,𝑛) are positive integers, the slope −𝑑𝑛/𝑑𝑚 must be a rational number. From Equation (6),

the nearly degenerate condition can be generalized as 𝑚𝑜/𝑛𝑜=𝑞/𝑝, where p and q are coprime positive integers. Figure 3
depicts the spectrum 𝑘𝑚,𝑛 as a function of the ratio 𝑚/𝑛 for a square billiard with 1≤𝑚,𝑛≤700. The spectrum conspicuously

reveals that the eigenvalues are clustered in the vicinity of 𝑚/𝑛=𝑞/𝑝 to form valley structures. Clustering means that levels

with very different quantum numbers have very similar energies. From the condition 𝑚𝑜/𝑛𝑜=𝑞/𝑝, the central eigenstate for

the coherent superposition can be in terms of a single parameter N as 𝑚𝑜=𝑞𝑁 or 𝑛𝑜=𝑝𝑁. The slope −𝑑𝑛/𝑑𝑚=𝑞/𝑝 signifies

that the quantum numbers for the nearly degenerate eigenstates around the central mode can be given using 𝑚=𝑞𝑁+𝑝𝐾
and 𝑛=𝑝𝑁−𝑞𝐾 with the integer index K in a small range. Consequently, the coherent superposition of the nearly degenerate

eigenstates around the central mode can be generalized as

(5)

where 𝜙 is the phase factor in the range of −𝜋≤𝜙≤𝜋 and (2𝑀+1) means the total number of the superposed eigenstates.

Note that the parameter ϕ corresponds to the starting point of the classical particle shown in Figure 1. Under the

circumstance of 𝑁>>𝑀, the eigen-energies of the superposed eigenstates can be confirmed to be close to a constant

energy. Figure 4 illustrates the wave patterns |Ψ(𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 calculated using Equation (7) with N = 100, M = 5, and

𝜙=𝜋/2 for eigenstates clustered around the indices (p,q) shown in Figure 3. The wave patterns of |Ψ(𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 are

evidently localized on the classical POs. The velocity direction of the trajectory can be straightforwardly determined with

the relation of 𝑘𝑥/𝑘𝑦=𝑚/𝑛=𝑞/𝑝. By way of explanation, the wave function in Equation (7) is not a strictly stationary state
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√m2 + n2

Ψ(p,q)
N ,M(x, y;ϕ) =

1

√2M + 1

M

∑
K=−M
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since the eigenstate components are not exactly degenerate for the Hamiltonian H. Nevertheless, Δ𝐻/<𝐻> will rapidly

approach to zero as 𝑁→∞

for a small M. Therefore, the coherent state in Equation (7) can be regarded as a quasi-stationary state in the mesoscopic

region.

Figure 3. Directionally resolved level distribution 𝑘𝑚,𝑛 as a function of the ratio 𝑚/𝑛 with 1≤𝑚,𝑛≤700 for manifesting the

level clustering relevant to classical POs.

Figure 4. Wave patterns for quasi-stationary coherent states |Ψ(𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 calculated using Equation (6) with N =

100, M = 5, and 𝜙=𝜋/2 for eigenstates clustered around the indices (p, q).

The trajectorial equations for POs can be derived from the quantum coherent state in Equation (7) for the central

maximum of the wave intensity. Using the identity sin𝜃=(𝑒𝑖𝜃−𝑒−𝑖𝜃)/(2𝑖), the representation of the coherent state in Equation

(7) can be organized as

Ψ(𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)=12𝑎[𝑒𝑖𝑁Θ−𝑔(𝑥,𝑦)𝐷𝑀(Θ+𝑡(𝑥,𝑦)+𝜙)+𝑒−𝑖𝑁Θ−𝑔(𝑥,𝑦)𝐷𝑀(Θ+𝑡(𝑥,𝑦)−𝜙)]−12𝑎[𝑒𝑖𝑁Θ+𝑔(𝑥,𝑦)𝐷𝑀(Θ−𝑡(𝑥,𝑦)+𝜙)+𝑒−𝑖𝑁Θ+𝑔(𝑥,𝑦)𝐷𝑀(Θ−𝑡(𝑥,𝑦)
(8)

where

(6)DM(θ) =
1

√2M + 1

M

∑
K=−M

eiKθ



Θ±𝑔(𝑥,𝑦)=𝜋(𝑞𝑥±𝑝𝑦)/𝑎 and Θ±𝑡(𝑥,𝑦)=𝜋(𝑝𝑥±𝑞𝑦)/𝑎. The function 𝐷𝑀(𝜃) in Equation (9) is the Dirichlet kernel that exhibits the

periodic maxima of the intensity at 𝜃=2𝑛𝜋 for any integer n. Using the periodic maximal characteristic of the Dirichlet

kernel, the parametric equations for the central maxima of the intensity |Ψ(𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 can be generalized as

𝐴 𝑥+𝐵 𝑦±𝜙=2𝑛𝜋, where −𝐴 /𝐵 =𝜂 represents the slope. From Equation (8) and Θ±𝑡(𝑥,𝑦)=𝜋(𝑝𝑥±𝑞𝑦)/𝑎, the slopes for all

parametric equations can be found to be two cases of 𝜂=±𝑝/𝑞. Furthermore, all parametric equations can be confirmed to

exactly correspond to the trajectorial lines of classical POs in a square billiard. The initial position (𝑥𝑜,𝑦𝑜) and the velocity

(𝑣𝑥,𝑣𝑦) in classical dynamics can be linked to Equation (8) using the condition of 𝐴 𝑥𝑜+𝐵 𝑦𝑜±𝜙=2𝑛𝜋 as well as

𝑣𝑦/𝑣𝑥=(𝑑𝑦/𝑑𝑡)/(𝑑𝑥/𝑑𝑡)|𝑥𝑜,𝑦𝑜=𝜂. From the result of 𝜂=±𝑝/𝑞, the velocity (𝑣𝑥,𝑣𝑦) can be verified to be consistent with the classical

dynamics 𝑣𝑦/𝑣𝑥=𝑝/𝑞. To sum up, the trajectorial equations for the classical POs can be analytically extracted from the

quantum coherent states in Equation (7). It is worthwhile to mention that the lines of the phase functions Θ±𝑔(𝑥,𝑦) and the

lines of the trajectorial functions Θ±𝑡(𝑥,𝑦) in Equation (8) are mutually orthogonal.

4. Equilateral Triangular Billiard

Square billiard is a classically separable and integrable system, whereas the equilateral triangle billiard is an integrable

but non-separable system. In theory, the correlation between the quantum level clustering and the classical POs was

deeply discussed from the representation of the quantum coherent states. In experiments, the oxide-confined VCSEL

devices were fabricated in the shape of an equilateral triangle to analogously manifest the quantum level distribution and

the spatial features of the wave functions. For an equilateral-triangular billiard with three vertices at (0,0), (𝑎/2,3−−√𝑎/2),

and (−𝑎/2,3−−√𝑎/2), the eigenfunctions are given using 

𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)=16𝑎233√−−−−√{cos[2𝜋3𝑎(2𝑚−𝑛)𝑥]sin(2𝜋3√𝑎𝑛𝑦)−cos[2𝜋3𝑎(2𝑛−𝑚)𝑥]sin(2𝜋3√𝑎𝑚𝑦)+cos[−2𝜋3𝑎(𝑚+𝑛)𝑥]sin[2𝜋3√𝑎(𝑚−𝑛)𝑦]}
(10)

𝜓(𝑜)𝑚,𝑛(𝑥,𝑦)=16𝑎233√−−−−√{sin[2𝜋3𝑎(2𝑚−𝑛)𝑥]sin(2𝜋3√𝑎𝑛𝑦)−sin[2𝜋3𝑎(2𝑛−𝑚)𝑥]sin(2𝜋3√𝑎𝑚𝑦)+sin[−2𝜋3𝑎(𝑚+𝑛)𝑥]sin[2𝜋3√𝑎(𝑚−𝑛)𝑦]}
(11)

where the quantum numbers m and n are nonnegative integers, and the superscripts (o) and (e) denote the two types of

degenerate modes with odd and even symmetries, respectively. The eigenvalues corresponding to the eigenfunctions

𝜓(𝑒)𝑚,𝑛(𝑥,𝑦) and 𝜓(𝑜)𝑚,𝑛(𝑥,𝑦) are given using 𝐸(𝑚,𝑛)=ℏ2𝑘2𝑚,𝑛/(2𝜇), where the wave numbers 𝑘𝑚,𝑛 are expressed as

(7)

Figure 5 shows the wave patterns of |𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)|2 for several sets of quantum numbers (𝑚,𝑛). Since the wave patterns

for |𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)|2 and |𝜓(𝑜)𝑚,𝑛(𝑥,𝑦)|2 are the same in the spatial patterns, only the case of |𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)|2 is presented in

Figure 5. Due to the setting of the equilateral triangle, all wave patterns can be found to be symmetric with respect to the

y axis. Like the results for a square billiard, the conventional eigenstates for an equilateral-triangular billiard cannot exhibit

the spatial properties of classical POs, even in the correspondence limit of large quantum numbers.

Figure 5. Wave patterns for eigenstates |𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)|2 for several sets of quantum numbers (𝑚,𝑛) in equilateral triangle

billiard.

The eigenfunctions 𝜓(𝑒)𝑚,𝑛(𝑥,𝑦) and 𝜓(𝑜)𝑚,𝑛(𝑥,𝑦) in Equations (10) and (11) are the standing-wave representation. The

traveling-wave representation is more convenient for constructing the coherent states relevant to classical POs. In terms

of 𝜓(𝑒)𝑚,𝑛(𝑥,𝑦) and 𝜓(𝑜)𝑚,𝑛(𝑥,𝑦), the traveling-wave representation is given using 𝜓(±)𝑚,𝑛(𝑥,𝑦)=𝜓(𝑒)𝑚,𝑛(𝑥,𝑦)±𝑖𝜓(𝑜)𝑚,𝑛(𝑥,𝑦) ,

[62][129]

km,n =
4π

3a
√m2 + n2 − mn



where the symbols (+) and (−) denote the forward and backward characteristics, respectively. Consequently, the wave

functions for 𝜓(±)𝑚,𝑛(𝑥,𝑦) can be given using

(8)

Note that 𝜓(+)𝑚,𝑛 and 𝜓(−)𝑚,𝑛 form a conjugate pair with identical spatial patterns. Again, the quantum coherent states

related to the classical POs can be formed via superposition of the nearly degenerate eigenstates. As discussed in the

case of square billiard, the nearly degenerate condition for equilateral triangle billiards with the central order (𝑚𝑜,𝑛𝑜) can

be given using

(9)

Since the slope −𝑑𝑛/𝑑𝑚

needs to be a rational number, the nearly degenerate condition in Equation (14) can be generalized as

(2𝑚𝑜−𝑛𝑜)/(2𝑛𝑜−𝑚𝑜)=𝑞/𝑝 with p and q being coprime positive integers. Figure 6 depicts the spectrum 𝑘𝑚,𝑛 as a function of

the ratio (2𝑚−𝑛)/(2𝑛−𝑚) for an equilateral triangle billiard with 1≤𝑚,𝑛≤700. The eigenvalues can be seen to be clustered in

the vicinity of (2𝑚−𝑛)/(2𝑛−𝑚)=𝑞/𝑝 to display the valley structures. Obviously, the level clustering is certainly accompanied

by the emergence of the gap. From the condition (2𝑚𝑜−𝑛𝑜)/(2𝑛𝑜−𝑚𝑜)=𝑞/𝑝, the central eigenstate for the coherent

superposition can be given by 𝑚𝑜=(2𝑞+𝑝)𝑁 and 𝑛𝑜=(2𝑝+𝑞)𝑁 with a single parameter N. Combining with −𝑑𝑛/𝑑𝑚=𝑞/𝑝 from

Equation (14), the coherent superposition of nearly degenerate eigenstates around the central mode can be expressed as

(10)

where 𝜙 is the phase factor in the range of −𝜋≤𝜙≤𝜋. Under the circumstance of 𝑁>>𝑀, the eigen-energies of the

superposed eigenstates can be found to be nearly a constant energy of

(11)

Figure 6. Directionally resolved level distribution 𝑘𝑚,𝑛 as a function of the ratio (2𝑚−𝑛)/(2𝑛−𝑚) with 1≤𝑚,𝑛≤700 for

manifesting the level clustering relevant to classical POs.

Figure 7 illustrates the wave patterns of |Ψ(±,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 calculated using Equation (15) with N = 100, M = 5, and

𝜙=𝜋/2 for eigenstates with the indices (𝑝,𝑞) shown in Figure 6. The wave patterns of |Ψ(+,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 can be seen to

ψ
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be precisely concentrated on the classical POs. Since Ψ(+,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙) and Ψ(−,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙) form a conjugate pair,

the spatial patterns are completely identical.

Figure 7. Wave patterns for quasi-stationary coherent states |Ψ(±,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙)|2 calculated using Equation (15) with N =

100, M = 5, and 𝜙=𝜋/2 for eigenstates clustered around the indices (p, q).

The same as in the case of a square billiard, the trajectory equations for POs can be derived from Equation (15) from the

central maximum of the wave intensity. Using sin𝜃=(𝑒𝑖𝜃−𝑒−𝑖𝜃)/(2𝑖), the representation in Equation (15) can be organized

as

(12)

where

(13)

(14)

(15)

(16)

(17)

Ψ
(+,p,q)
N ,M (x, y;ϕ)

= √ 16

a23√3

1
2i [eiNΘ+

g1(x,y)DM(Θ+
t1(x, y,ϕ)) − eiNΘ−

g1(x,y)DM(Θ−
t1(x, y,ϕ))

−eiNΘ+
g2(x,y)DM(Θ+

t2(x, y,ϕ)) + eiNΘ−
g2(x,y)DM(Θ−

t2(x, y,ϕ))

+eiNΘ+
g3(x,y)DM(Θ+

t3(x, y,ϕ)) − eiNΘ−
g3(x,y)DM(Θ−

t3(x, y,ϕ))]

Θ±
g1(x, y) =

2π

a
[qx ±

(2p + q)

√3
y]

Θ±
g2(x, y) =

2π

a
[px ±

(2q + p)

√3
y]

Θ±
g3(x, y) =

2π

a
[−(p + q)x ±

(q − p)

√3
y]

Θ±
t1(x, y,ϕ) =

2π

√3a
[

(2p + q)

√3
x ∓ qy]+ ϕ

Θ±
t2(x, y,ϕ) =

2π

√3a
[

−(2q + p)

√3
x ± py]+ ϕ



(18)

The representation for Ψ(−,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙) can be given using the conjugate of Ψ(+,𝑝,𝑞)𝑁,𝑀(𝑥,𝑦;𝜙). Using the maximal

feature of the Dirichlet kernel, the parametric equations for the central maxima of |Ψ(+,𝑝,𝑞)𝑁,𝑀| can be deduced as

Θ±𝑡 𝑗(𝑥,𝑦,𝜙)=2𝑛𝜋 with 𝑗=1,2,3. Consequently, the classical POs of the equilateral-triangular billiard can be confirmed to be

constituted by six independent line equations with different slopes. Using the form 𝐴𝑗𝑥+𝐵𝑗𝑦+𝜙=2𝑛𝜋 to express the trajectory

equations, the slopes can be generalized as −𝐴𝑗/𝐵𝑗=±𝜂𝑗 with 𝜂1=(2𝑝+𝑞)/3−−√𝑞, 𝜂2=(𝑝+2𝑞)/3−−√𝑝, and 𝜂3=(𝑝−𝑞)/3−−√(𝑝+𝑞).

Similar to the quantum coherent state for a square billiard, the lines of the phase functions Θ±𝑔 𝑗(𝑥,𝑦) and the lines of the

trajectorial functions Θ±𝑡 𝑗(𝑥,𝑦) in Equation (17) are mutually orthogonal for 𝑗=1,2,3, respectively.

5. Circular Billiard

Circular billiard is another pedagogical paradigm in classically separable and integrable systems. The azimuthal and radial

components of the eigenfunctions of a circular billiard are the form of exp(imϕ) and the Bessel function of the first kind,

respectively. Helically phased light beams with the azimuthal phase form of exp(imϕ) are well known to carry an orbital

angular momentum (OAM) of mη per photon, where m is an integer . In ray dynamics, the function of a circular

billiard is the same as the transverse confinement of a cylindrical waveguide for light. Consequently, the propagation-

invariant solutions of the Helmholtz equation in a cylindrical waveguide can be in terms of the Bessel beams with well-

defined OAM . The OAM or optical vortex (OV) of light has been widely used in numerous applications, such as

generating OAM-entangled photon pairs , trapping and rotating micron and submicron objects ,

generating astrophysical OAM light , assembling DNA biomolecules , OAM-based microscopy and imaging ,

super-diffraction limit imaging , and optical communication .

The eigenstates in polar coordinates for a circular billiard with radius R are given using

(19)

where 𝑚∈𝛧, 𝑛∈𝛮, and 𝐽𝑚(•) are the Bessel functions of the first kind with order m. The quantum numbers m and n are the

quantization of the azimuthal and radial oscillations, respectively. The eigenvalues for 𝜓𝑚,𝑛(𝑟,𝜃) are given using

𝑘𝑚,𝑛=𝑥𝑚,𝑛/𝑅 with 𝑅=𝑎/2, where 𝑥𝑚,𝑛 is the nth zero of 𝐽𝑚(𝑥) and a is the billiard diameter. Figure 8 shows the wave

patterns for the function |Re[𝜓𝑚,𝑛(𝑟,𝜃)]|2 with different quantum numbers (m, n). Here, the real part of the eigenfunction

𝜓𝑚,𝑛(𝑟,𝜃) is purposely used for revealing the nodal structures in the radial and azimuthal directions associated with the

indices n and m, respectively.

Figure 8. Wave patterns for the functions of Re[𝜓𝑚,𝑛(𝑟,𝜃)] with different quantum numbers (m, n) for circular billiard.

Unlike square and equilateral triangular billiards, the nearly degenerate condition for a circular billiard cannot be

straightforwardly derived from the eigenvalues 𝑘𝑚,𝑛

determined with 𝐽𝑚(𝑘𝑚,𝑛𝑅). The Wentzel–Kramers–Brillouin (WKB) method was nicely used to analytically obtain the

nearly degenerate condition for a circular billiard. The eigenvalues 𝑘𝑚,𝑛 derived from the WKB method is given using 

Θ±
t3(x, y,ϕ) =

2π

√3a
[

(q − p)

√3
x ± (p + q)y]+ ϕ

[130][131]

[132]

[133][134] [135][136][137]

[138] [139] [140]

[141] [142]

ψm,n(r, θ) = [
2

R2J 2
m+1(km,nR)

]

1/2

Jm(km,nr)
1

√2π
eimθ

[143]



(20)

where 𝑅𝑜 is the shortest distance to the center for a wave inside the billiard. The relationship between 𝑅𝑜 and 𝑘𝑚,𝑛 can be

connected from both the quantum and classical OAM theories. From the quantum momentum ℏ𝑘𝑚,𝑛, the semiclassical

OAM can be expressed as 𝐿𝑧=𝑅𝑜(ℏ𝑘𝑚,𝑛). On the other hand, the quantum OAM can be directly in terms of the azimuthal

quantum number as 𝐿𝑧=𝑚ℏ. Consequently, the relationship between 𝑅𝑜 and 𝑘𝑚,𝑛 can be given using 𝑅𝑜𝑘𝑚,𝑛=𝑚. In

classical ray dynamics, the distance 𝑅𝑜 for a periodic orbit with indices (p, q) can be found to be 𝑅𝑜=𝑅cos(𝑝𝜋/𝑞), where q
is the number of turning points at the boundary during one period and p is the number of windings during one period.

Using 𝑅𝑜=𝑅cos(𝑝𝜋/𝑞) and 𝑅𝑜𝑘𝑚,𝑛=𝑚, Equation (25) can be rewritten as

𝑘𝑚,𝑛𝑅sin(𝑝𝜋/𝑞)=(𝑝𝑞𝑚+𝑛+34)𝜋 (26)

Equation (26) indicates that the eigenstates 𝜓𝑚𝑜−𝑞𝐾,𝑛𝑜+𝑝𝐾 with 𝐾∈𝛧 can constitute a family of nearly degenerate states

for 𝑚𝑜>>|𝑞𝐾|. From 𝑅𝑜=𝑅cos(𝑝𝜋/𝑞), 𝑅𝑜𝑘𝑚,𝑛=𝑚, and 𝑅=𝑎/2, the relationship between the ratio 𝑝/𝑞 and 𝑘𝑚,𝑛 can be given

using

(21)

In other words, the parameter 𝜋−1cos−1[2𝑚/(𝑘𝑚,𝑛𝑎)] can be used to manifest the connection of the quantum level

distribution and the classical POs. Figure 9 illustrates the spectrum 𝑘𝑚,𝑛 versus the parameter 𝜋−1cos−1[2𝑚/(𝑘𝑚,𝑛𝑎)] for a

circular billiard with 1≤𝑚,𝑛≤700. The spectrum 𝑘𝑚,𝑛 can be found to be clustered with the conditions in Equation (27) to be

satisfied. Just like square and equilateral triangle billiards, the level clustering is certainly accompanied by the appearance

of the level gap. Namely, the eigenvalues 𝑘𝑚,𝑛 constitute the structure of energy shells in each neighborhood of the

central state with 𝑘𝑚𝑜,𝑛𝑜=𝑚𝑜/[𝑅cos(𝑝𝜋/𝑞)]

, corresponding to the emergence of sharp peaks in the density of states .

Figure 9. Directionally resolved level distribution 𝑘𝑚,𝑛 versus 𝜋−1cos−1[2𝑚/(𝑘𝑚,𝑛𝑎)] with 1≤𝑚,𝑛≤700 for manifesting the

level clustering relevant to classical POs.

Once again, the manifestation of classical POs in quantum systems can be fulfilled by exploiting a coherent superposition

of the eigenstates belonging to the same shell of the spectrum. In terms of the nearly degenerate eigenstates

𝜓𝑚𝑜−𝑞𝐾,𝑛𝑜+𝑝𝐾 and the phase factor ϕ, the coherent states for circular billiards can be expressed as

(22)

Figure 10 shows the wave patterns |Ψ(𝑝,𝑞)𝑚𝑜,𝑀(𝑟,𝜃;𝜙)|2 calculated with m  = 100, M = 2, and the different sets of

parameters (𝑝,𝑞) and 𝜙=0. As expected, all the wave patterns |Ψ(𝑝,𝑞)𝑚𝑜,𝑀(𝑟,𝜃;𝜙)|2 of the coherent states are precisely

concentrated on the classical POs.
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Figure 10. Wave patterns for quasi-stationary coherent states |Ψ(𝑝,𝑞)𝑚𝑜,𝑀(𝑟,𝜃;𝜙)|2 calculated with m  = 100, M = 2, and

different sets of parameters (𝑝,𝑞) and 𝜙=0.

Logically, the trajectory equations for classical POs can be extracted from the quantum coherent states in Equation (28).

However, the extraction cannot be the same as the cases of square and equilateral triangular billiards to be reached

straightforwardly. The derivation for the trajectory equations needs to be skillfully used for the integral representation, the

asymptotic form, and the boundary condition for the Bessel functions. The integral representation for the Bessel functions

of the first kind is given using 

(23)

Using the boundary condition 𝐽𝑚(𝑘𝑚,𝑛𝑅)=0 and the asymptotic form 𝐽𝑚(𝑧)≈(2/𝜋𝑧)−−−−−−√cos[𝑧−(2𝑚+1)𝜋/4] for 𝑧→∞, the

coefficient related to the normalization constant in Equation (24) for high-order modes can be approximated as

(24)

Substituting Equations (29) and (30) into Equation (24), the high-order eigenstates 𝜓𝑚,𝑛(𝑟,𝜃)

can be expressed as

(25)

Note that the eigenfunctions in Equation (31) are still exact for a circular billiard, and the only one approximation is the

normalization constant. In substitution of Equation (31) into Equation (28), the quantum coherent states can be expressed

as

(26)

where the integration variable is changed to be 𝜉=𝜗−𝜃+𝜙, and 𝐷𝑀(𝑞𝜉) is the Dirichlet kernel given using Equation (9).

Since 𝐷𝑀(𝑞𝜉) is a periodic pulse function with period 2𝜋/𝑞 for the variable 𝜉, the integration in Equation (32) on the range

[−𝜋,𝜋] can be divided into q segments with the integration interval shortened on the range [−𝜋/𝑞,𝜋/𝑞]. Consequently, the

quantum coherent state in Equation (32) can be rewritten as

(27)

As long as (2𝑀+1)𝑞>>1, the 𝐷𝑀(𝑞𝜉) can display a narrow peak concentrated in a small region of −Δ≤𝜉≤Δ with the effective

width of Δ=𝜋/[𝑞(2𝑀+1)]. By using the small angle approximation, the sine term in Equation (31) can be given by

o

[145]
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(28)

From Equation (34) and the relation 𝑘𝑚𝑜,𝑛𝑜=𝑚𝑜/𝑅𝑜, the quantum coherent state in Equation (33) can be organized as

(29)

where

(30)

(31)

To derive an analytical form, the kernel 𝐷𝑀(𝑞𝛼) is further approximated as a gate function whose values are unified in the

interval [−Δ,Δ] and vanish outside. Accordingly, the integration in Equation (35) can be simplified as

(32)

where sinc(𝜒)=sin(𝜒)/𝜒 is the sinc function. Since the central maximum of the sinc(𝜒) function occurs at 𝜒=0, the parametric

equations for the central maxima of the quantum coherent states in Equation (38) can be confirmed using Θ𝑡,𝑠(𝑟,𝜃;𝜙)=0.

Therefore, the trajectory equations for classical POs of a circular billiard can be specifically given using 𝑟cos(𝜃+𝜃𝑠−𝜙)=𝑅𝑜
with 𝜃𝑠=2𝜋𝑠/𝑞 and 𝑠=0,1,…,𝑞−1.
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