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The Internet of Things (IoT) and blockchain have contributed to massive advancements in the fields to which they

have been applied. The benefits of the blockchain, which include enhanced security, transparency, and greater

traceability, make it a promising technology for integration with IIoT, which has long had issues with security.

However, there are several issues that limit the integration of blockchain into Industrial Internet of Things (IIoT)

systems. One of these issues is the huge storage requirement of the blockchain. There are several solutions to

address these concerns. These solutions, which include summarization-based, compression-based, and storage

scheme optimization methods, are necessary to enable the further development of blockchain–IIoT integration.

However, these solutions have shortcomings that reduce their effectiveness. Compression-based schemes

produce compressed blocks or data that accumulate over time and may not ensure enough storage savings on

peers. This can be alleviated by designing compression techniques that provide an efficient representation of data

for IIoT systems to yield better compression ratios. Summarization-based schemes reduce redundancy in block

data by using the net change in transferring entities between parties and, thus, are better suited for financial

systems than for IIoT systems. 
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1. Storage and Scalability Concerns of Blockchain–IIoT
Integration

The immutable nature of the blockchain and its reliance on consensus between participating nodes give rise to

several issues around the storage of the blockchain ledger. The number of blocks that can be appended to the

blockchain in a given period of time is limited due to the consensus mechanism and data broadcast between nodes

; thus, the throughput of transactions is much lower compared to more traditional database-based systems .

The Industrial Internet of Things (IIoT) connects many devices, all of which generate data and require

management, storage, and retrieval; the throughput of typical blockchain systems would be inadequate to deal with

all of these connected devices. Full nodes on a blockchain network are required to store the entire blockchain

ledger. Since the ledger is append-only, the capacity of these nodes to store the ledger will eventually be

exceeded, and their storage capacity would have to be expanded to adapt .
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The growth of the blockchain ledger greatly affects the scalability of the blockchain system. The number of full

nodes on the blockchain is also restricted due to the high storage requirements . This increases centralization in

the blockchain, which, in turn, affects the security of the system. These three blockchain characteristics—

decentralization, scalability, and security—are considered crucial and are at the heart of the blockchain trilemma, a

concept first described by Vitalik Buterin, the co-founder of Ethereum, as shown in Figure 1 .

Figure 1. The blockchain trilemma.

The blockchain trilemma proposes that tradeoffs among the decentralization, scalability, and security of a

blockchain system are inevitable . The blockchain is, by nature, decentralized, and security is an essential

property in its operation. However, this affects its scalability. A classic example is in the Bitcoin network, where

reducing latency to improve transaction throughput may result in weakened security due to a higher probability of

creating forks in the blockchain .

2. Approaches to Storage Efficiency in Blockchain–IIoT

The storage problem of the blockchain has been approached in different ways by works that propose solutions for

mitigating it. These storage optimization schemes or storage models are usually motivated by specific use cases

and may be designed for either permissionless or permissioned blockchains. While the same principles underlie

both blockchain architectures, their designs differ in many ways. Some storage optimization schemes capitalize on

certain aspects of these architectures to achieve storage efficiency. The requirements of the use case influence the

blockchain architecture and, particularly in IIoT, permissioned blockchains are used, since industrial participants

are known and access to data can be controlled. Some of the schemes discussed in this section can be

implemented on either permissioned or permissionless blockchains. Schemes of this nature generally do not
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change the operation of the underlying blockchain and may involve processing of data before submission to the

blockchain or changing the storage system of the peers.

2.1. Compression-Based Schemes

Compression-based schemes utilize a compression algorithm to reduce the amounts of data that are submitted as

transactions to the blockchain or to reduce the size of the blocks in the blockchain. They can be divided into block

compression techniques and data compression techniques. Table 1 shows a comparison of these schemes.

Table 1. Comparison of compression-based schemes.

2.1.1. Block Compression

Block compression schemes aim at reducing the storage overhead of the blockchain by compressing the block

after it is generated and committed to the blockchain. Kim et al.  proposed SELCOM, a selective compression

scheme using a Block Merkle Tree, for lightweight nodes in blockchain systems. As shown in Figure 2, SELCOM

allows nodes to maintain blocks selectively through a second chain called a checkpoint chain. It uses BMT to
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compress several blocks into a checkpoint. The compressed blocks can then be selectively removed or maintained

depending on each node. Their results indicated an average storage reduction of 76.02%. The maintenance of a

second chain introduces more complexity, as synchronization between peers for this chain is required. Unlike other

works, the scholars proposed an update mechanism to reduce the accumulation of compression results over time.

While SELCOM can be used to verify numerous blocks with fewer compression results, the security of such an

approach was not explored. Since IIoT systems have long been plagued with security concerns, the ability of

lightweight nodes to selectively maintain blocks raises concerns, since it may be also be easier to have malicious

nodes on the network. To improve the security of such sidechains, research should be undertaken to explore the

use of further cryptographic proofs .

Figure 2. SELCOM .

2.1.2. Data Compression

Some works have proposed the compression of product data before they are encapsulated in blockchain
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chain procedure that compresses and encrypts product data before its eventual submission to the blockchain.

Cpds uses a tree-based data compression mechanism that leverages the tree structure of traditional industrial

systems for the amortization of data compression overhead. Participants along the path in an industrial process

submit point transactions with the latest off-chain storage address of product data to the blockchain when they

transfer product records to the next participant. Terminal participants compress the final product data and submit

them to the blockchain as a data transaction. The scholars implemented their prototype of Cpds using Java and

Python, and they used Hyperledger Fabric as the blockchain. Their results showed that Cpds reduces storage

overhead by 4–9 times compared to the baseline design and has between 4.8 and 20 times faster access time

than that of the baseline design. Cpds is designed for permissioned blockchains for IIoT. It has a low impact on the

blockchain’s core operations, since it is only an overlay framework that sits atop the blockchain platform. In terms

of complexity, this approach is still relatively high, since it involves building a unified data-sharing service

encompassing compression and encryption techniques that handle product record transfer between industrial

participants, compression of product data, data access control, and authentication. Further research could be

undertaken to determine how well Cpds performs with large product data, since their tests were performed on

small product data from 100 bytes to 10 Kb.

Figure 3. Compressed and private data sharing (Cpds) .

2.2. Summarization-Based Schemes

Works based on summarization propose the use of summary blocks to reduce storage overhead. These summary

blocks contain details from original blocks that can then be replaced by the summary blocks. A comparison of these

works can be found in Table 2.
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Table 2. Comparison of summarization-based schemes.

2.3. Storage Scheme Optimization

Another approach to improving the storage efficiency of blockchain systems is to improve or change the storage

schemes of these systems. Generally, there are two ways in which blockchain data are stored; these are on-chain,

where all blockchain data are either fully or partially stored by the blockchain peers, and off-chain, which introduces

technologies such as cloud computing and secure distributed file storage to alleviate the storage burden on the

blockchain peers.

2.3.1. Off-Chain Storage

An intuitive approach to reducing the storage burden on blockchain peers is to leverage the storage capabilities of

other systems outside the blockchain network. There are two main ways in which this can be achieved: cloud

storage and distributed file storage. Table 3 shows a comparison of these works.

Table 3. Comparison of off-chain storage scheme optimization works.
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inefficiency for systems such as IIoT. One of the interesting ideas that arose to combat this is providing flexibility

when it comes to the generation of transactions. Table 4 shows a comparison of these works.

Table 4. Comparison of on-chain storage scheme optimization works.
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