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The Internet of Things is perhaps a concept that the world cannot be imagined without today, having become
intertwined in everyday lives in the domestic, corporate and industrial spheres. However, irrespective of the
convenience, ease and connectivity provided by the Internet of Things, the security issues and attacks faced by
this technological framework are equally alarming and undeniable. In order to address these various security

issues, researchers race against evolving technology, trends and attacker expertise.

loT datasets machine learning cyberattack

| 1. Introduction

Technology is a rapidly evolving paradigm that is especially difficult to keep up with in the field of computing. This
can be mainly accredited to the advancements made in semiconductor chips, which are continuously improved and
exploited for research purposes. Some of the most recent buzz terms that can be commonly heard and are of
relevance are machine learning (ML), federated learning (FL), blockchain and Internet of Things (loT). These
technologies can be further combined with one another to improve their individual outputs or efficiency and to
generate an alternate byproduct or result. For example, FL can be used to ensure or enhance data privacy in the
IoT and ML can be used to make automated predictions in 0T devices. On the other hand, blockchain can be used

to improve trust and transparency in data transactions in loT networks.

loT, is a term coined by Kevin Ashton in 1999 @ but only gained traction in 2013. Since 2017, loT has grown
tremendously and will continue to do so at an even greater rate according to market and industry surveys 28143l
Bl 10T has penetrated every sector of life, encompassing transportation, health, communication, agriculture,
homes, etc., with even traditional devices having become ‘smart’, e.g., smart locks, smart cars, smart fridges,
smart lights, smart speakers and smart watches. According to [, as of 2020, there was an equal number of loT
and non-loT devices in the world, and the amount of the former is estimated to triple by 2025. While making life
easier, this explosive growth has introduced many related concerns, such as the need for more speed, storage,

capabilities, efficiency, etc., which researchers are continually trying to address and improve.

One of the biggest growing concerns, however, is the security and privacy of users, data, devices and the IoT
network, which are often overlooked by both manufacturers and consumers. Implementing failsafe systems can be
a painstaking process, yet the failure to do so can lead to serious repercussions for both individual users and
companies. Cybercrimes are very common and already impact existing home IoT networks. A recent incident

reported by the British Broadcasting Corporation (BBC), for instance, revealed how a family became suspects to a
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cybercrime that involved child abuse, to the detriment of their domestic life, income and mental health, the crime
most likely having occurred via the hacking of their Wireless Fidelity (Wi-Fi) router, whose default password
settings had not been changed . Most cyberattacks commonly result from exploiting security vulnerabilities, such
as weak/default password usage, poor update management, insecure interfaces, lack of user and data privacy,

poor user awareness, lack of vendor standardization and many more.

Numerous steps must be continually taken to ensure that cybersecurity is maintained. These include the raising of
user awareness/cyber education, security policy implementations, security software and tools (such as antivirus,
firewalls, etc.) and, more recently, automated measures using machine and deep learning (DL) techniques.
Exhaustive research has been carried out for conventional network and data security, but such work is severely
lacking in emerging fields such as IoT. For example, numerous datasets have been generated and created by
various studies and researchers on general-purpose networks, the earliest of which—known as the DARPA
(Defense Advanced Research Projects Agency) dataset—dates back to 1998 €. Other datasets, found in [2QJL1I[12]
have been used to design intrusion detection and prevention systems (IDSs and IPSs, respectively). With respect
to those widely used to train ML algorithms for I0T networks, older datasets, such as Knowledge Discovery in
Databases (KDD) and Network Security Laboratory Knowledge Discovery in Databases (NSL-KDD), are believed
to have shortcomings, e.g., there are a large number of duplicate records that could skew the machine training and
learning process in the KDD dataset 3], and NSL-KDD, though an improvement over KDD, does not include more
recent attack classes and IoT network properties. UNSW-NB15 141 (by the University of New South Wales) and
CIC-IDS2017 and CIC-IDS2018 15 (by the Canadian Institute for Cybersecurity) are the more recent datasets
used for loT ML training, but as these datasets are not primarily concerned with I0T networks attack detection

becomes limited.

2. What Are the Datasets Created Specifically for the Study
of loT Networks and Their Security?

The survey addresses this question by finding datasets that have been created using loT devices in either a
simulated environment or a physical network. In most cases, the IoT networks created are exposed to attacks and
the network behavior is studied and analyzed under various attack conditions. Benign and attack data are collected
and used to train ML and DL algorithms to create intrusion detection systems (IDSs). Ten datasets were found that
are being studied and experimented on as part of this survey. Brief descriptions of these datasets are given below,

while details of their attack capabilities can be found in Table 1.

« Bot-loT 28 s a simulated dataset created to study and analyze network forensics using ML and DL techniques.
It is based on five 10T scenarios consisting of a weather station, a smart fridge, motion-activated lights, a
remotely activated garage door and a smart thermostat. These simulated environments were exposed to three
categories of attacks: information gathering (port scans, operating system (OS) fingerprinting); denial of service
(Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP) for
both denial of service (DoS) and distributed denial of service (DDoS)), and information theft (keylogging and

data theft), which are commonly exploited by botnets (bots). This dataset consists of more than 72 million
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packet capture (PCAP) records. The distribution of attack records is not uniform, however, with the information
theft attacks having the least number of records.

loT Network Intrusion Dataset (17 (IoTNID) was created using two real devices: a camera and a speaker. The
dataset consists of reconnaissance, man-in-the-middle (MiTM), DoS and Mirai attacks. All the attack packets
except those of Mirai were captured using the Nmap tool, while the Mirai attack packets were generated using a

laptop.

loT-23 18] s a dataset created using three physical 10T devices: a Philips HUE smart Light Emitting Diode
(LED) light, an Amazon Echo device and a Somfy smart door lock. These devices were set up to model 20
different malware scenarios and 3 benign scenarios (one for each device). Each malware scenario was
exposed to a botnet (bot) attack, such as Mirai, Gafgyt, Torii, etc. This dataset was manually analyzed to

provide benign and attack traffic features.

MedBloT 12 js a dataset that tries to emulate a medium-sized network consisting of 80 simulated devices and
3 real devices. The devices used were a switch, a light bulb, a lock and a fan. The setup was exposed to three

types of botnets: Mirai, BASHLITE and Torii. This dataset aims to provide data for intrusion detection of botnets.

MQTT-loT 2% js a dataset based on a publish/subscribe message protocol called Message Queue Telemetry
Transport (MQTT) used in the application/middleware layer. It is based on a simulated setup comprising 12 loT
sensors in four different attack scenarios (Table 1) and one benign scenario. This dataset was intended to be

used for intrusion detection using ML techniques.

MQTTset (21l is another dataset based on the MQTT communication protocol, in this case aimed at aiding the
application of ML techniques in MQTT networks. The setup was simulated using eight different sensors of the
following types: temperature, light, humidity, carbon monoxide (CO) gas, motion, smoke, door and fan to exploit
five MQTT network attacks. This dataset removes features such as source and destination IP (Internet Protocol)
addresses, port addresses and communication times among others that can be found in other datasets and

focuses mainly on MQTT-based features.

N-BaloT [22: The Network-based Detection of loT (N-BaloT) dataset was created using nine IoT devices,
namely, two doorbells, one thermostat, one baby monitor, four security cameras and one webcam. These
devices were of different makes and models. The network setup was exposed to two types of botnet attacks:
Mirai and BASHLITE. Each of these botnets has other attacks, as specified in Table 1. This dataset comprises

both benign and attack traffic intended for the study and detection of botnet attacks.
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N-BaloT Mirai (ack flooding, syn flooding, UDP flooding, UDP plain flooding), ,
BASHLITE (junk, UDP flooding, TCP flooding, COMBO attack) atasets. It
1 ch type of
BASHLITE COMBO attack %
P& in its
Scanning (host, port, OS) v 12 MQTT
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Dataset Attack

10T-23 Mirai, Torii, Hide and Seek, Muhstik, Hakai, Internet Relay Chat
Botnet (IRCBot), Hajime, Trojan, Kenjiro, Okiru, Gagfyt

MedBloT Botnet malware: Mirai, BASHLITE and Torii
Aggressive scan

MQTT-loT UDP scan
Sparta Secure Shell (SSH) brute force, MQTT brute-force attack
Flooding denial of service,

MQTTset MQTT Publish flood, Slow DoS against Internet of Things
Environments (SlowlITe), malformed data, brute-force authentication
scanning,

ToN_loT DoS, DDoS, and man-in-the-middle attacks
Ransomware, backdoor, injection, cross-site scripting, password
DoS/DDoS (ICMP), MiTM (DNS spoofing)

MiTM (ARP spoofing),
DoS/DDoS (TCP SYN, UDP)

Edge-lloT
Information gathering (port scan, OS fingerprinting, vulnerability
scan),

HTTP DoS/DDoS, injection attack (XSS, SQL injection, uploading
attack), malware (backdoor, password cracking, ransomware)
ACK fragmentation, UDP flood, UDP plain flood, RSTFIN flood,
PSHACK flood, TCP flood, SYN flood, synonymous IP flood
ICMP flood, ICMP fragmentation, DNS spoofing, ping sweep, OS
scan, vulnerability scan, port scan, host discovery, GREIP flood,

CICIoT2023 Greeth flood
SlowLoris, HTTP flood, SQL injection, command injection, backdoor
malware, uploading attack, XSS, browser hijacking, dictionary brute-
force
ARP spoofing

VVIIL IO IVINg 1 1 iiﬁy

Will flag MQTT flag v v
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v v
v
4
v 4
v
4 v
4
v
4
v
v v
4
v
v
4
4

 Notes

4. What ML and DL Techniques Have Been Applied to These
Datasets for Attack Detection?
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model than their counter-ML algorithms. For these reasons, researchers have adopted a similar approach to DL as
they have with ML, which is selecting the minimum and best features of a dataset to train an algorithm. It can be
seen in [13] among other studies, that the runtime is reduced with a smaller feature set without (significantly)

affecting the efficiency of the algorithm.

Some scientists, on the other hand, have tried to combine algorithms or create different ones similar to ensemble
techniques U4 Qverall, it was seen from BAIEl and 231 for example, that tree-based algorithms, such as
random trees (RTs), random forests (RFs), etc., performed better on average compared to others. Algorithms like
Naive Bayes (NB), though faster, had poorer performance comparatively B8 |t was also observed that the
most commonly used ML algorithms were tree-based, while neural networks (NNs) are the most common for DL

algorithms.

Despite various efforts, it was seen that some classes in the datasets did not yield promising results. For example,
I3l found the prediction of benign traffic in 10T-23 to be poor, while 28 reported low precision rates for data theft
and keylogging attack classes. Understanding the reasons behind these outcomes is important so that the datasets
can be improved and newer ones without the same shortcomings can be generated in order to yield better

detection results.

5. Any Other Methods Applied to These Datasets for Attack
Detection?

It was observed that a different approach from the more traditional ML or DL is on the rise now. Known as
federated learning, FL allows participating devices (in this case I0T devices or sensors) to retain their individual
data (instead of sharing it with a server or datacenter) and to collaboratively train a shared prediction model. This
method promotes privacy as node data are not exposed. Another advantage of this method is that data from
devices can be non-1ID (independent and identically distributed), meaning the devices could train the model at
different times with different data sizes or parameters. This is a huge advantage, as loT sensors differ in terms of

their characteristics and the amount of information they gather.

https://encyclopedia.pub/entry/48341 10/11



Data-Driven Attack Detection Trends in lIoT | Encyclopedia.pub

An increasing number of studies using FL have been seen in the last two years. Seven of the discussed datasets in
this study have been explored by researchers using FL. It is more common to see the use of DL or neural networks
(NNs) in FL than traditional ML algorithms. This can be accredited to the fact that DL and NN models are better at
learning and computing complex patterns in data with the use of multiple layers and deep architectures. This also
reduces the need for manual feature engineering, as DL and NN algorithms can automatically deduce important
features in the data used. A key difference between FL and ML is the use and transfer of models instead of data
between devices and the training/testing server that allows privacy preservation of data. This is made possible with
the use of transfer learning, where DL models can be pre-trained and deployed on the loT devices, thereby
reducing the need to train models from scratch. However, despite these benefits, DL algorithms are more resource-
consuming compared to ML algorithms, e.g., in terms of training time, memory consumption, computational time,

etc., which would add to the overheads of loT devices, as they are usually limited in resources.
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