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Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors.

Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as

abnormal development and function of most organ systems. 
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1. Primary Cilia

1.1. Cilia Structure and Components

Primary cilia are extrusions of the plasma membrane that display a variety of receptors and mechanosensors. The

core structure is an axoneme of nine doublet microtubules that extend from a basal body, and they are therefore

referred to as “9 + 0” cilia. This distinguishes them from motile “9 + 2” cilia, which have an additional two dynein-

associated central microtubules, permitting motion.

As primary cilia do not intrinsically have associated ribosomes, they instead rely on the intraflagellar transport (IFT)

system to ferry receptors and other proteins into and out of the cilium.  This system is capable of bidirectional

movement along the length of the flagella, between the outer doublet of microtubules and the flagellar membrane.

 IFT proteins, especially Ift88, are often knockout targets in cilia research, as their inactivation results in the

absence of primary cilia in the affected cell.

At the base of the cilium, near the basal body, an interactome of proteins, coined CPLANE, is responsible for

ciliogenesis and intraflagellar transport. (Figure 1) These proteins act at the basal body to recruit IFT-A proteins to

the base of the cilium and stabilize and insert complete IFT-A particles into the axoneme. Mutations in these

proteins have been associated with a variety of ciliopathies.  Numerous other membrane-bound proteins located

along the cilia have been associated with ciliopathies as well, including polycystins, known for causing autosomal

dominant polycystic kidney disease, and septins, which have been linked with a variety of cancers and

neurodegenerative conditions. .
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Figure 1. Primary cilia structure and components. Primary cilia are an extrusion from the cell wall capable of

displaying numerous proteins, including those depicted here and many others, and are supported by nine doublet

microtubules arising from the basal body. IFT proteins ferry components along the length of the cilia, while the

CPLANE interactome remains at the base of the cilia.

1.2. Ciliopathies

For classification purposes, first-order ciliopathies are those diseases which occur due to a mutation in genes

required for the proper assembly, maintenance, or function of the cilia or the related centriole; second-order

ciliopathies occur due to dysregulation of further upstream factors, such as the nuclear transcription factors Atf3,

Tsc22d4, and Cbx5.  There are at least 300–1000 first-order, and many more second-order, genes.[13][14] [13][15][16]
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Primary cilia play an important role in most mammalian organ systems, so ciliopathies tend to display a variety of

multiorgan dysfunction phenotypes. Bardet—Biedl syndrome, for example, is characterized by retinitis pigmentosa,

obesity, polydactyly, cognitive impairment, and renal failure.  Most ciliopathies show some amount of brain,

craniofacial, or endocrine dysfunction, though kidney, reproductive, and heart tissues are also often involved.

One of primary cilia’s most important roles, and part of the reason mutations cause such varied phenotypes, is the

display of receptors important for cell signaling pathways and the machinery for signal transduction.  One of the

best studied is Hedgehog (Hh), which is highly dependent on functional primary cilia.  The

transmembrane protein Smoothened (Smo), which is responsible for Gli protein activation in the Hh pathway, is

found at the tip of the cilium.  Other pathways, such as Wnt, Notch, and PCP, similarly depend on primary cilia,

and ciliopathies can impair their function.

Autophagy and programmed cell death pathways, which are important for tissue homeostasis and are perturbed in

neurodegenerative diseases and cancer, depend on proper ciliary function due to machinery localization to the cilia

and interdependent feedback mechanisms.  Loss of primary cilia function results in excess cell death from

autophagy in mitochondrial stress responses and from mitochondria-dependent apoptosis.  Finally,

extracellular matrix makeup is sensed and regulated through primary cilia.

1.3. Primary Cilia Locations

Despite their importance for many cellular pathways, primary cilia have not been identified on all cardiac cell types.

Primary cilia are displayed on fibroblasts in the heart,  as well as on vascular endothelial cells, though expression

on valvular endothelium decreases over time, from abundance in embryologic samples to near absence in adult

samples.  Most cardiac interstitial (mesenchymal) cells also display primary cilia.  Cardiomyocytes

contain primary cilia in embryonic tissue samples and lack them in adult samples, but there is disagreement

regarding their presence on neonatal samples,   suggesting a possible loss of primary cilia over time.

2. Primary Cilia in Acquired Heart Disease

2.1. Acquired Valvular Heart Disease

The importance of proper cilia function in the embryonic heart has been well established.  In a

comprehensive analysis of over 87,000 mutagenized mouse fetuses, Li et al. identified 61 genes in which

mutations were capable of producing echocardiographically identifiable congenital heart defects, and 35 of these

genes encoded either motile or primary cilia proteins. An additional 16 genes were involved in cilia-transduced cell

signaling, and 10 regulated vesicular trafficking, which is necessary for proper cilia function.

Unlike the congenital defects analyzed by Li et al., mitral valve prolapse (MVP) is not evident on echocardiogram at

birth. Instead, it is unusual in infants and children and it is more frequently identified in patients aged 30–80 years

of age.  This valve pathology is a result of myxomatous degeneration over the lifetime of the patient.
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In a genome-wide association study, enrichment for cilia genes was found in patients with MVP, and murine

homozygous mutants of the two known familial MVP genes, Dchs1 and Flna, showed decreased primary cilia

length on the neonatal mitral valve leaflets.  Exploring cilia’s mechanistic role in MVP, Toomer et al. showed

that the presence of primary cilia on endocardial cells correlated with increased proteoglycan and decreased

collagen in the extracellular matrix of valve endocardium. Conditional knockout of intraflagellar transport protein 88

(Ift88) in cardiac endothelial cells in mice resulted in decreased primary cilia counts, increased proteoglycans, and

fragmented collagen, for example, the initiation of myxomatous degeneration.  While primary cilia abundance

on valvular endothelium decreases with age, their effect on the extracellular matrix persists. As adults, these mice

show myxomatous mitral valve disease.

2.2. Fibrosis

In addition to myxomatous degeneration of the valve, patients with MVP also show progressive left ventricular

fibrosis. Cardiac fibrosis is an excessive production and deposition of scar tissue, often a result of conditions such

as hypertension or diabetes mellitus, and can lead to increased tissue stiffness, cardiomyocyte atrophy, and

arrhythmias.  The fibrosis observed with MVP is more significant than that seen in patients with primary mitral

valve regurgitation from a non-MVP etiology, which may suggest a common cause for both excessive fibrosis and

MVP.

In cardiac fibroblasts, activation of the transforming growth factor β-1 (TGF-β1) receptor results in production of

fibronectin, collagen type I, and collagen type III, which are necessary components of the extracellular matrix in

fibrotic tissue.  Fibroblasts also undergo transformation to myofibroblasts, which express α-smooth muscle actin

(α-SMA) and display contractile ability.

Inactivation of primary cilia by small interference RNA (siRNA) silencing of Polycystin-1 (PC1) in fibroblasts results

in a lack of upregulated collagen production in response to TGF-β1. Similarly, siRNA silencing of either PC1 or Ift88

in cardiac fibroblasts results in failure of the fibroblasts to differentiate into myofibroblasts capable of contractile

function, which is necessary for standard cardiac remodeling. These mice instead show excess myocardial

hypertrophy and altered scar architecture.

In addition to native cardiac fibroblast proliferation, endothelial-mesenchymal transition (EndMT) is now recognized

as an important source of fibroblasts for perivascular and subendocardial fibrosis.  Knockdown of Ift88 in

endothelial cells, which results in the absence of primary cilia on these cells, appears to be insufficient to directly

induce EndMT in vivo but may prime these cells for EndMT in response to lower stress than would otherwise be

required.

2.3. Vascular Pathology and Cilia

In addition to their role in fibrosis after an ischemic injury, primary cilia also regulate atherosclerosis and, therefore,

the risk of ischemic events. Primary cilia serve as mechanosensors in a variety of cell types.  In endothelial cells

with functional primary cilia, excess shear stress stimulates PC1 interaction with Polycystin-2 (PC2), permitting
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calcium influx and activating calcium-dependent signaling molecules, including calmodulin and calcium-dependent

protein kinase (PKC), that lead to activation of endothelial nitric oxide synthetase (eNOS) and subsequent

vasodilation.

Branch points and the lesser curvature of the aorta are at particular risk of atherosclerosis due to relatively low and

oscillatory shear stress.  These areas also display increased density and stability of primary cilia.  Initial

research suggested that primary cilia may play a role in producing atherosclerosis, as apolipoprotein-E-deficient

(Apoe ) mice display increased primary cilia as well as increased atherosclerosis at these risk points.

However, removing these cilia via knockout of Ift88 results in increased atherosclerosis in Apoe  mice in

response to a high fat, high cholesterol diet, suggesting this is a protective response mediated by eNOS.

PC1 and PC2 gene mutations produce autosomal dominant polycystic kidney disease (ADPKD), which results in

hypertension in two-thirds of cases.  In addition to the eNOS activation mechanism, primary cilia also protect

against hypertension via dopamine receptor 5 (DR5).  Stimulation at this receptor results in adenylyl cyclase

and PKC activation, leading to vasodilation.

2.4. Ventricular Remodeling and Recovery

Cardiomyocyte hypertrophy is an important cell autonomous and non-cell autonomous adaptive response to

significant stress, especially hypertension, that is necessary for survival. However prolonged stress and resultant

excess hypertrophy and cardiac remodeling can lead to heart failure and sudden cardiac death.

Cardiomyocytes have some ability to sense mechanical forces, including hemodynamic stress, in order to convert

stress into intracellular growth signals and induce hypertrophy. However, the molecular identity of the

mechanosensor remains elusive. Primary cilia are an attractive candidate as a mechanosensor; however, this has

not been demonstrated experimentally.

One possible mechanism appears to be via ciliary extracellular-like vesicles (cELVs).  These vesicles are

released from cilia under normal circumstances and at increased rates under fluid shear stress. Blocking ciliary

proteins necessary for cELV production using short hairpin RNA (shRNA) prevents cELV production and results in

left ventricular hypertrophy, decreasing left ventricular ejection fraction, and, eventually, low blood pressure and

cardiovascular collapse.

2.5. Congenital Heart Disease and Late-Onset Heart Failure

Patients with CHD show a higher risk of heart failure later in life than patients born with grossly normal hearts.

 it was showed an overall prevalence of heart failure of 26% in a cohort of patients with surgically corrected

congenital heart disease (CHD).  While the highest risk of heart failure is in patients with morphologically right

ventricles exposed to systemic pressures, even patients with isolated ventricular septal defect are at higher risk of

systolic and diastolic dysfunction 30 or more years after surgical repair.  This suggests that either a factor of the

surgery can produce ventricular dysfunction decades later, such as the residual scar tissue, or else that a common

etiology for both the CHD and ventricular dysfunction exists.
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Some familial CHD-producing gene mutations have also been associated with ventricular dysfunction, such as the

sarcomeric gene MYH7.  However, it are not aware of any current published research directly linking primary cilia

gene mutations with heart failure through a mechanism different than those discussed above. While primary cilia

are not displayed on adult cardiomyocytes, many ciliary proteins continue to exist and function at non-cilia

locations, and cilia continue to be present in other cell types. Acquired ventricular dysfunction may therefore be

mediated by ciliated non-myocytes, or else via cilia-independent functions of cilia proteins in cardiomyocytes.

Alternatively, ciliogenesis may be reactivated in de-differentiated cardiomyocytes or cardiomyocyte progenitor cells

in response to stress. Another possibility is that primary cilia defects in the developing heart result in permanent

differences in the adult myocytes’ response to the stresses discussed above. Additional research is needed to

identify the role of primary cilia in heart failure.
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