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Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2

(IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage

tumour development, but their role in later stages remains ambiguous. The prognostic value of the IDH mutation in

chondrosarcoma seems controversial and (pre)clinical studies that have focused on the direct and indirect targeting of the

IDH mutation have not yielded novel treatment strategies.
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1. Frequency and Prognostic Value of IDH1 and IDH2 Mutations

IDH mutations are also frequently observed in other tumour types, such as acute myeloid leukaemia (AML), glioma, and

cholangiocarcinoma . Interestingly, the most common variant differs between the above-stated tumour types. Cartilage

tumours and cholangiocarcinoma mainly have IDH1 p.R132C variants (~60%), glioma predominantly harbours IDH1

p.R132H mutations (~90%), and AML often has IDH2 p.R140Q mutations (~40%) . None of the variants are

exclusively observed in one tumour type, suggesting that different point mutations can have a similar effect on

tumourigenesis, although the level of the oncometabolite D-2-hydroxyglutarate (D-2-HG) produced by these variants

differs . The prognostic value of IDH mutations in these tumour types is also diverse, and only glioma patients have

a clear favourable outcome when their tumour harbours an IDH mutation . Studies that were performed to

determine the prognostic value of IDH mutations in chondrosarcoma show contradictory results. While it was previously

reported that IDH mutations do not predict outcomes , other studies showed either a worse  or better  prognosis

for IDH mutant (IDH ) chondrosarcoma patients. The three patient cohorts were similar in size (n = 70 to 80) and

median age (50 to 60 years), but the chondrosarcoma subtype inclusion (conventional versus addition of dedifferentiated

and mesenchymal cases) and median follow-up time (4.3 versus ≥10 years) differed, which might explain the discrepancy

in results. Another factor might be the type of technique used to assign patients to the IDH  subgroup. For instance,

Sanger sequencing is not sensitive enough to detect mutations when present in less than <30% of the sequenced PCR

product, leading to false-negative results in samples with a low IDH  variant allele frequency or tumour cell percentage

and thereby the assignment of IDH  patients to the IDH wildtype (IDH ) subgroup. Despite the lack of prognostic

value, the high occurrence rate of IDH mutations in all of these tumour types suggests that they have an important role in

driving tumourigenesis, already in the early stages of tumour development.

2. Oncogenic Activities of IDH Mutations

Both IDH enzymes function in the tricarboxylic acid (TCA) cycle, where they convert isocitrate into α-ketoglutarate (α-KG)

and CO . Mutated IDH enzymes acquire a neomorphic function, leading to the additional conversion of α-KG into the

oncometabolite D-2-HG . The IDH1 p.R132C variant is one of the most efficient D-2-HG producers, while both IDH1

p.R132H and IDH2 p.R140Q produce lower levels of the oncometabolite . As certain variants are more frequently

observed in specific tumour types , this could suggest that chondrosarcoma and cholangiocarcinoma rely on high D-2-

HG levels, while glioma and AML depend on relatively lower levels of the oncometabolite.

Due to the high structural similarity between α-KG and its antagonist D-2-HG, the oncometabolite is able to competitively

bind α-KG-dependent enzymes, leading to the overall inhibition of this class of enzymes . The inhibition of α-KG-

dependent enzymes leads to widespread changes in the epigenomes and metabolomes of cells and affects DNA repair

and cellular growth signalling pathways . For instance, the D-2-HG-mediated inhibition of α-KG-dependent DNA

demethylases (family of TET enzymes, including TET1/2) and histone demethylases (family of Jumonji enzymes,

including KDMA4A/B) leads to an overall DNA hypermethylation phenotype, as well as an aberrant histone methylation

phenotype in IDH mutant tumours. IDH  enchondromas and chondrosarcomas are indeed characterised by a CpG

island methylator phenotype (CIMP)-positive status, and DNA hypermethylation is present in primary IDH
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chondrosarcomas . The family of Jumonji enzymes is also involved in the regulation of the Mechanistic Target Of

Rapamycin Kinase (mTOR) signalling pathway, as well as DNA repair via the homologous recombination pathway.

Moreover, IDH  enzymes have a reduced ability to produce NADPH and consume high levels of NADPH to produce D-

2-HG, resulting in severely reduced overall NADPH levels. This deficiency does not only cause metabolic stress but will

also lead to an increase in reactive oxygen species (ROS), making IDH  tumours more vulnerable to DNA damage.

Besides the induction of metabolic stress, IDH  tumours also undergo metabolic rewiring, including alterations in

metabolites of the TCA cycle, a reduced dependency on glycolysis, and alterations in lipid metabolism. Additionally, D-2-

HG-mediated inhibition of the prolyl hydroxylase domain proteins (EGLN1 and -2) leads to the upregulation of hypoxia-

inducible factors (e.g., HIF1α), resulting in a metabolic switch to maintain oxygen homeostasis. D-2-HG also affects

collagen maturation via the inhibition of proline and lysine hydroxylases (P4HA1-3 and PLOD1-3), leading to an impaired

extracellular matrix structure. Thus, IDH mutations have a wide variety of downstream biological effects; therefore, these

mutations are considered as the drivers in multiple tumour types.

3. Inhibition of the IDH  Protein

To counteract the oncogenic activity of the IDH mutations, several inhibitors targeting either IDH1 p.R132 variants (e.g.,

ivosidenib) or IDH2 p.R140 variants (e.g., enasidenib) have been developed over the past couple of years . In vitro

studies and clinical trials show that AML patients could benefit from IDH  protein inhibitors , although some

patients develop resistance against these inhibitors over time. This acquired resistance is multi-factorial and can be

caused by second-site mutations in IDH  genes to prevent the binding of IDH  protein inhibitors, IDH  isoform

switching to circumvent the effect of IDH  protein inhibitors, or novel acquired mutations in genes encoding for receptor

tyrosine kinases (RTKs) . Direct inhibition of IDH  proteins seems less promising for other tumour types that

frequently harbour an IDH mutation . Especially in chondrosarcoma, the effect of IDH  protein inhibitors in in

vitro assays seems controversial. While several studies have shown that IDH1  protein inhibition does not affect the

tumourigenic properties of chondrosarcoma cell lines , other groups have shown that IDH1  protein inhibition

causes a decreased proliferation rate in chondrosarcoma cell lines at higher doses or with a different compound .

Recent results from a phase I clinical trial with the IDH1  inhibitor ivosidenib showed that prolonged disease control

(i.e., progression-free survival of ~6 months) could be achieved in a subset of patients with advanced chondrosarcoma,

predominantly in patients with a minimal number of co-occurring mutations .

4. Synthetic Lethal Interactions with the IDH Mutation

As IDH  protein inhibitors showed limited efficacy in in vitro assays and clinical trials or acquired resistance was

observed, a large number of in vitro studies were performed to determine whether directly targeting the downstream

biological effects of IDH mutations would be more promising. Indeed, multiple synthetic lethal interactions with the IDH
mutation were reported for AML and glioma, including radiotherapy, chemotherapy, and agents that target poly(ADP-

ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2) family members, Bromodomain and Extra-Terminal Motif (BET)

proteins, DNA methyltransferases (DNMTs), mTOR, Nicotinamide Phosphoribosyltransferase (NAMPT), and glutaminase

. However, chondrosarcoma cell lines are variably sensitive to a selection of

these therapies, but the effect seems irrespective of the IDH mutation status, as IDH  chondrosarcoma cell lines show

similar treatment responses .

These contradictory findings on synthetic lethal interactions with the IDH mutation might be ascribed to different factors.

First, the cell of origin and the tumour microenvironment (e.g., cartilaginous matrix formation and hypoxia in

chondrosarcoma) of the distinct tumour types that frequently harbour an IDH mutation are highly different and could

therefore influence the role that IDH mutations play in tumourigenesis. Second, the level of the D-2-HG oncometabolite

may also influence the downstream biological effects of IDH mutations. The most common IDH variants in AML and

glioma both produce relatively low D-2-HG levels, whilst the most common point mutation in both cholangiocarcinoma and

chondrosarcoma produces relatively high levels of the oncometabolite . It was recently shown that a lower level of

DNA hypermethylation was observed for the IDH1 p.R132H variant compared to non-p.R132H variants, irrespective of

tumour type . Lastly, the type of in vitro model (endogenous vs. artificially created) might influence whether synthetic

lethal interactions with the IDH mutation are present or not. The introduction of an IDH mutation in a glioma model leads

to reduced glutamine and glutamate levels, but this change in TCA cycle metabolites is not present when endogenous

IDH  and IDH  glioma models are compared . Most synthetic lethal interactions with the IDH mutation were indeed

identified in generic cancer cell lines with an introduced IDH . AML and glioma cell lines with an endogenous IDH
are scarce, but the utilised chondrosarcoma cell lines do harbour endogenous IDH mutations and this difference in model

type could explain why synthetic lethal interactions with the IDH mutation are absent in the chondrosarcoma in vitro

[18][19][20]

MUT

MUT

MUT

MUT

[21]

MUT [22][23]

MUT MUT MUT

MUT

[24][25][26] MUT

[27][28][29][30] MUT

MUT

[27][31] MUT

[32][33]

MUT

[34]

MUT

[27][28][35][36][37][38][39][40][41][42][43][44][45][46][47][48]

WT

[49][50][51][52][53][54][55]

[4][5][6]

[3]

WT MUT [56]

MUT MUT



studies. As IDH mutations occur early during tumourigenesis, especially in chondrosarcoma, artificial models with an

introduced IDH mutation may not be representative of the role that IDH mutations normally play in tumourigenesis. These

studies also introduced the IDH mutation in generic cancer cell lines that are easy to transfect (e.g., HeLa, HCT116, and

U2OS cells), and these cell lines do not represent the tumour types in which IDH mutations frequently occur. Moreover,

most studies generated models that overexpressed the IDH  protein, whilst the balanced expression of IDH  and

IDH  is needed to retain efficient D-2-HG production .

5. Putting the IDH Mutation into Context to Define Underlying
Vulnerabilities

In addition to these factors, it was recently shown that the (epi)genetic landscape in which IDH  and IDH  are

embedded is another important aspect to take into consideration when defining underlying vulnerabilities in tumour types

that frequently harbour an IDH mutation. Studies on AML and glioma have shown that the genetic and epigenetic

landscape in which IDH  and IDH  function is highly heterogenous and thereby influences the therapy response and

patient outcome . For instance, mutations in TP53 and ATRX are the underlying

denominator in defining which IDH  and IDH  gliomas respond to radiotherapy ; the overexpression of BCAT1 in

IDH  AML leads to an IDH -like DNA hypermethylation phenotype , and additional mutations in DNMT3A cause

reduced levels of DNA hypermethylation in IDH  AML samples . Furthermore, co-occurring (epi)genetic alterations

such as CIMP status , 1p19q deletions , CDKN2A deletions , MET amplifications , PDGFRA amplifications

, and TERT mutations  influence overall survival in IDH  glioma patients. Moreover, IDH  AML patients with a

co-occurring NPM1 mutation show overall a better response to chemotherapy with or without venetoclax . The

influence of co-occurring (epi)genetic alterations may also explain why distinct IDH  tumour types differ in therapy

sensitivity and underlines the need to use endogenous IDH  models, as generic cancer cell lines with an introduced

IDH mutation do not represent the (epi)genetic landscape in which IDH mutations naturally exist. Thus, the IDH mutation

status does not solely define the underlying vulnerabilities, which is in line with previous findings for chondrosarcoma 

, suggesting that a dichotomy between IDH  and IDH  is too simplistic.

Besides IDH mutations, chondrosarcomas frequently harbour mutations in TP53, CDKN2A/B, COL2A1, YEATS2, NRAS,

and TERT . However, the rest of the previously observed co-occurring mutations seem to follow a more

random pattern and are present in less than 10% of the chondrosarcomas , leading to a highly heterogeneous

genetic landscape in which IDH  and IDH  function in chondrosarcoma. Furthermore, IDH  chondrosarcomas are

characterised by a global hypermethylation phenotype that changes with increasing histological grade , and, based

on methylation profiles alone, several chondrosarcoma subgroups could be defined, even within IDH  and IDH
tumours . Moreover, using chondrosarcoma transcriptome and methylome data, it was previously shown that different

molecular subtypes (i.e., high mitotic state, 14q32 miRNA cluster loss of expression, and IDH -induced DNA

hypermethylation) exist, and that these are associated with patient outcomes . Moreover, (epi)genetic alterations in the

TERT gene (i.e., hypermethylation and promotor mutations) affect the survival probability of IDH1  chondrosarcoma

patients, whilst this association is absent in IDH  and IDH2  patients .
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