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Stroke ranks as one of the top first leading causes of death and disability worldwide, particularly for the most populous

countries in Asia, Europe, and North America. The emerging wearable devices intended to monitor the physiological

parameters, and the growth of machine learning applied to predict diseases, are promising solutions to prevent stroke and

eventually predict stroke risk.
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1. Introduction

Stroke ranks as one of the top first leading causes of death and disability worldwide , particularly for the most

populous countries in Asia, Europe, and North America. It is the number one cause of death and disability in China , and

it is the 2nd and 4th leading cause of death in Germany and United States, respectively . However, 80% of strokes are

preventable if risk factors can be controlled . Hypertension is one of the major risk factors for both ischemic and

hemorrhage strokes . Also, hyperglycemia, hyperlipidemia, obesity, diabetes, atrial fibrillation, smoking, heavy drinking,

sedentary lifestyle, and unhealthy diet are among the well-known risk factors to control . Many available guidelines

describe “population-wide” and “high-risk” strategies intended for stroke prevention . For population-wide strategies,

various scoring systems are developed to evaluate the risk of stroke according to specific risk factors, such as health

condition, lifestyle, behaviors, and family history of diseases . Actions are proposed to people to control risk factors,

such as changing lifestyle behaviors or taking medicine, and the variation in the risk of stroke is tracked by evaluating the

risk of stroke annually. However, those who are identified to have a high risk of stroke are directed to high-risk prevention

strategies . The procedures contain sub-clinical examinations, such as carotid ultrasound and transcranial doppler

(TCD) which can better characterize the cerebrovascular function and analyze the consequences of reduced function on

the risk of stroke . In addition, according to various levels and causes of risk factors, drugs, surgeries, or regular follow-

up examinations are carried out to prevent stroke.

The above-described strategies to prevent stroke are beneficial but present several limitations. First, the accessibility of

survey or sub-clinical examinations can be low due to geographical or resource limitations. Second, the self-reported

personal and family health conditions can be subjective or difficult to quantify. Third, the physiological conditions in the

strategy for stroke prevention are not characterized or evaluated in real-time, which cannot reflect the instant variation of

the health condition. Fourth, the collected physiological parameters can only indirectly reflect the risk of stroke. For

example, a blood vessel is blocked by a blood clot that cannot be identified by an instant blood pressure value measured

by a wrist or an arm blood pressure cuff. Fifth, the preventive reactions can only be carried out on those being involved in

a stroke prevention project or system including several follow-up visits. Moreover, a person’s will to take sub-clinical

examinations or participate in follow-up visits and examinations regularly is difficult to control. Last, the risk of stroke can

be estimated, but the possible onset time of stroke cannot be determined.

The emerging wearable devices intended to monitor the physiological parameters, and the growth of machine learning

applied to predict diseases, are promising solutions to prevent stroke and eventually predict stroke risk . In fact,

wearable devices are easy to use, allowing monitoring of the variation of vital signs continuously without impeding the

normal life of people. These devices can be used by people living in various areas (rural and urban) where medical

resources and infrastructure can be insufficient. The wearable devices used for real-time monitoring of physiological

parameters when a person is diagnosed with certain risk factors during annual checkups are shown in Figure 1.

Regarding monitoring the cholesterol level using a mobile app, although around two-thirds of cholesterol is synthesized by

the liver and only one-third of cholesterol level depends on the diet, the cholesterol influenced by food intake is the part

which can be controlled and monitored by wearable devices. Regarding excessive drinking, it has been shown that

alcohol consumption is associated with changes in ECG, such as heart rate, heart rate variability (HRV), P-wave, and QTc

prolongation . The recorded data listed in Figure 1 can be instantly analyzed then compared with the historical

health records of a database containing a person’s personal and family health records. Regarding machine learning

techniques, they are applied to analyze the risk of stroke according to the instantly recorded physiological parameters and

a person’s electronic health records (EHRs) . A prediction system may evaluate the risk early enough in time to

reduce the stress of a person, and increase the efficiency of medical interventions.
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Figure 1. The wearable devices to monitor the variations of physiological parameters in real-time when a person is

diagnosed with certain risk factors during an annual check-up. ECG: electrocardiogram; PPG: photoplethysmography;

TCD: transcranial Doppler; CT: computed tomography; MRI: magnetic resonance imaging.

2. Wearable Devices for Stroke Risk Prediction

Available wearable technologies to measure the physiological parameters associated with the risk of stroke are

summarized in Figure 2. Besides, mobile applications to evaluate one’s risk of stroke are included. Also, the risk factors

resulting from these technologies are discussed, and the advantages and drawbacks of various technologies are

described below.

 

Figure 2. Wearable devices and mobile applications for stroke risk prediction. The wearable devices include sensors for

air pollution, devices for measuring vascular-related parameters, carotid ultrasound and Transcranial Doppler (TCD), a

gait monitoring system consisting of an accelerometer and pressure sensors, goggles for monitoring eye movements and

multimodal Electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS) devices for monitoring

cerebral electrical and hemodynamic activities. DBP: diastolic blood pressure, ECG: electrocardiogram; EEG:

electroencephalography; fNIRS: functional near-infrared spectroscopy; HRV: heart rate variability; PI: pulsatility index; PP:

pulse pressure; PPG: photoplethysmography; PSV: peak systolic velocity; SBP: systolic blood pressure; TCD: transcranial

Doppler.

2.1. Questionnaires and Scoring Systems via Mobile Applications

Various questionnaires and scoring systems are available to evaluate one’s risk of stroke according to the self-reported

personal health condition and lifestyle habits and behaviors . Since the popularity of the smartphone is high, conveying

the questionnaires or scoring systems via mobile applications (mobile app) increases the accessibility of this population-

wide strategy for stroke risk stratification . The Stroke Riskometer is a mobile app endorsed by the World Stroke

[17]

[18]



Organization to evaluates one’s risk of stroke over the next 5 to 10 years based on 20 questions. In addition, it provides

suggestions to lower the risk of stroke . Another stroke risk system is specifically developed for the Chinese

population to predict 10-year and lifetime stroke risk (Table 1) .

Table 1. Risk factors in a scoring system specifically developed for the Chinese Population.

Risk Factors

Sex

Age

Geographic region (northern/southern China, divided by the Yangtze River)

Waist circumference

Total cholesterol

High-density lipoprotein cholesterol

Blood pressure

Antihypertensive medications within the past two weeks

Diabetes Mellitus

Current smoker

Parental history of stroke

These questionnaires are developed based on Framingham risk score, which is the oldest scoring system developed for

stroke risk prediction . During evolution of the past 20 more years, around 10 other scoring systems have been

developed based on the same Framingham risk score . These scoring systems are mainly applied on patients with

atrial fibrillation (AF) to stratify their risk of stroke. AF is the most common disorder of heart rhythm, which accounts for at

least 20% of all types of stroke . AF means rapid and irregular beating of the atrial chambers of the heart resulting in

abnormal heart rhythm. Blood can be stagnated and thrombus can be formed within the left atrial appendage due to the

dysrhythmia. This can lead to cardioembolic stroke. The risk of stroke of patients with non-valvular AF is five times higher

than those without AF . These scoring systems help to stratify patients with AF to benefit most from anticoagulation,

which is reported to reduce more than two-thirds of the incidence of stroke .

The scoring systems available as mobile apps are easy to access and intuitively interpret results. However, there are still

limitations for these scoring apps. First, people need to know their common physiological parameters, such as systolic

blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL) cholesterol, and low-density

lipoprotein (LDL) cholesterol when conducting the questionnaires. Second, the systems do not allow real-time updates of

the physiological parameters. Third, a scoring system may be not validated for people with various ethics or at various

regions. Fourth, these assessments cannot suggest the risk of stroke in the near future, such as coming weeks or months.

To improve current scoring systems, mobile apps can be connected to wearable devices which record the real-time

physiological parameters. The processing algorithms secure better assessment when using the variation of the imported

physiological parameters. In addition, customizing the apps for individuals can increase the overall outcome of scoring

systems.

2.2. Sensor for Air Pollution Embedded in Smart Phone

The association of air pollutants, such as airborne particulate matters up to 2.5 µm in diameter (PM ), and various toxic

gases with stroke have been evaluated this decade . It is proved that short-term exposure of PM  and the toxic

gases are associated with an increase in hospitalization due to ischemic stroke in China . In fact, up to 29% of the risk

of stroke is attributable to air pollution . Worryingly, unlike most other modifiable risk factors, air pollution is unavoidable.

Domestic and worldwide policies to lessen the impact of air pollution on risk of stroke are urgent needs.
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An air pollution detector can validate both the daily concentration and the duration of such pollution. For example, W-Air is

a platform embedded in a wristband for air pollution monitoring . It allows measuring toxic gases of the environment

without the influences of the gases emitted by the users. However, W-Air is not able to monitor PM . A miniaturized mass

sensing based on a micro-electro-mechanical system (MEMS) structure is developed to monitor PM  . However, the

main criterion of air pollution sensor for stroke risk prevention is to continuously monitor both PM  and toxic gases, and

the measured values should not be influenced by other scents emitted by the user. Also, the wearable device is better

integrated with a mobile phone to avoid wearing extra devices . Besides improving the sensor, increasing the public

awareness of the risk of stroke resulting from air pollution represents a key step to gain the effectiveness of these

sensors.

2.3. Devices for ECG Monitoring

Patients with atrial fibrillation, determined by the irregularity of the pulse rate, have a five-times higher risk of stroke than

those without AF. Among those with clinical AF, one third of them have subclinical AF, which can also result in

thromboembolic occurrence and leads to ischemic stroke . People with subclinical AF have no obvious symptoms and

often cannot be detected using a conventional short-term Electrocardiogram (ECG) exam, resulting in less attention to

their risk of stroke. With the emergence of 24-h portable ECG or cardiac implantable electronic devices (CIEDs), such as

a pacemaker, subclinical AF and device-detected AF can be detected, increasing the accessibility of the risk factors of

stroke . Moreover, with the dramatic increase in the accessibility to ambulatory ECG via wearable devices, other

cardiac risk factors related to stroke can be monitored continuously and analyzed in real-time .

Apple Watch (Apple Inc., Cupertino, CA, USA) series 4 extracts heart rate from recorded photoplethysmography (PPG)

. The incorporated algorithm, which is the first to obtain Food and Drug Administration (FDA) clearance to determine

AF, derives the pulse rate from the peak to peak interval of PPG pulsations . However, pulse rate irregularity is not the

only character of AF, other irregular electrical activity of ECG recording can be used to identify AF. Therefore, wearable

devices that enable ECG monitoring benefit more on stroke risk prevention. Thus, another ECG device called

KardiaMobile 6L from AliveCor, a smartphone attachment enabling 6-lead ECG recoding, is presented . It is also an

FDA cleared device for detection of AF. The integrated KardiaAI platform can distinguish AF between normal sinus rhythm

based on the recorded ECG signals.

Both algorithms of the discussed devices are designed to determine the presence of atrial fibrillation. However, it has

been shown that AF is not always necessary for the formation of thrombus and the occurrence of embolization .

Abnormal atrial structure and function can also result in thrombosis and then increase the risk of stroke, even in people

without AF . These abnormalities found in P-wave indices, Q-wave, QRS/QT duration, other waveform angles and

slopes, and HRV are associated with risk of stroke .

The wearable devices enabling the monitoring of these factors are often in the form of a chest patch, chest strap, or

garment. The usability and user comfort of these devices lead to a trade-off with the number of ECG channels. The limited

recording lead reduces the applicability of these devices on stroke risk prediction compared to conventional 12-lead ECG.

Besides the challenge of balancing the form factor and applicability of wearable ECG devices, there are other limitations.

The first limitation is that the ECG measurement is recommended to be conducted when resting, since the motion artifact

disturbs the recorded PPG or ECG signals. Second, the algorithms developed and released nowadays are restricted to

irregularity of pulse rate due to the complexity of real-time analysis of other cardio abnormalities related to risk of stroke.

Third, consultation of professionals for further inspection and diagnosis when abnormal ECG signals are detected is still

needed. Fourth, the recorded results can be biased when lack of active and continuous monitoring.

To increase the impact of ECG devices on stroke risk prediction, developing user friendly devices to record meaningful

signals for stroke risk analysis is the first step. Secondly there is a need to increase their accessibility in underdeveloped

countries, where prevalence of stroke is often higher. The third step is to develop algorithms with high accuracy and

specificity to reduce unnecessary anxiety or further testing. Fourth, combine EHRs with the recorded ECG to customize

the algorithms resulting a dynamic prediction system. Fifth, increase the awareness of stroke risk prevention using

wearable devices and encourage the users to actively take actions when receiving warming signals of abnormal ECG.

2.4. Devices for Vascular Related Risk Factors Monitoring

Since stroke is a neurovascular disease, the abnormalities of vascular related risk factors strongly associate to the risk of

stroke. Here, devices enabling continuous monitoring of blood pressure, pulse pressure, arterial stiffness, and blood flow

dynamics for stroke risk prediction are introduced.

2.4.1. Blood Pressure Monitoring

Hypertension, counting for up to 50% of cases, is the leading cause among all risk factors of stroke . It causes changes

in cerebrovascular structure resulting in the reduction of inner diameter or atherosclerosis of blood vessels. The released

fragments or debris of atherosclerotic plaques flowing in the blood vessels can cause stroke . Therefore, tracking the

variation of blood pressure (BP) suggests the changes of risk of stroke .
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Sphygmomanometers are widely accessible for BP monitoring. However, these cuff-based and cumbersome devices

hardly provide continuous monitoring . With the booming of various types of non-invasive, portable, and cuffless

sensors or sensor systems, continuous monitoring of blood pressure and parameters related to vascular properties is

feasible . PPG embedded in a smartwatch or a wristband (Biobeat BB-613) is a promising optical technique to

measure blood volume changes per pulse, which can be used to determine BP using various algorithms . Besides, a

wearable stretchable ultrasonic device placed on carotid artery is proposed to continuously measure the central blood

pressure waveform, which shows higher relevance to cardiovascular activities comparing to the superficial peripheral BP

measured using PPG .

These ambulatory recording devices facilitate continuous monitoring of BP in daily life which correlates more with the

occurrence of stroke than that measured in clinics . In addition, it is proved that the BP monitored during evening or

while sleeping predicts the risk of stroke more precisely than that monitored at any other time during a day .

Besides BP, pulse pressure (PP), and the difference between systolic blood pressure (SBP) and diastolic blood pressure

(DBP) are other risk factors which can be derived from recorded BP. It is reported that the risk of stroke incidence can be

raised by a 10 mmHg increase in PP .

Besides the parameters determined from the measured BP, the consequences of BP can be associated to risk of stroke.

For example, longstanding hypertension resulting in the accumulation of molecules on the wall of arteries thus increases

the stiffness of these arteries . Therefore, arterial stiffness which can be characterized by the second derivative wave of

PPG is another vascular related risk factor of stroke .

2.4.2. Blood Flow Dynamics Monitored by Doppler Ultrasonographic System

Higher degree of carotid stenosis implies higher risk of stroke . The conventional approach to access the degree of

carotid stenosis and characterize the carotid plaque is carotid ultrasound. However, the conventional hand-hold carotid

ultrasound is bulky and needs to be conducted by professionals. An ultrasound Doppler system embedded in a carotid

neckband is developed for continuous blood flow velocities monitoring. The neckband equipped two ultrasound

transducers enables monitoring of left and right arteries. The peak systolic velocity (PSV) of the recorded Doppler

waveform suggests the severity of carotid stenosis . Another character of carotid blood flow relates to stroke is carotid

pulsatility index (PI) .

However, there are limitations of these growing wearables for vascular related risk factors monitoring. First, to obtain

reliable signals in daily activities, designs of the devices and algorithms for signal processing need to be improved to

compensate the interreferences from motions. Second, the BP derived from current algorithms varies 5–10 mmHg from

that recorded from conventional standard techniques. This implies that probably only the variation of derived BP can be

valuable for stroke risk prediction. Third, the user can miss the optimal location to place the device and the results can

vary due to various locations of the device.

2.5. Devices for Carotid Plaque Characterization and Cerebral Microembolization Monitoring

Non-invasive imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI) are the

gold standards to characterize the structure of blood vessels (accumulation of plaques, development of atherosclerosis

and reduction of lumen diameter) and detect blood flow speed. Here, two more compact and user-friendly imaging

techniques compared with CT and MRI are introduced: ultrasound for carotid plaque monitoring and TCD ultrasonography

for embolic signal detection.

2.5.1. Carotid Ultrasound for Carotid Plaques Characterization

Up to 20% of ischemic strokes is caused by the atherosclerosis in a carotid artery . It has been considered that the

narrowing and hardening of the carotid artery caused by the accumulation of atherosclerosis plaques limits the blood flow

resulting in the increment of stroke risk. Therefore, ultrasound is applied to evaluate the carotid intima-media thickness

(CIMT) for classifying the degree of carotid stenosis caused by carotid atherosclerosis . However, conventional

carotid ultrasound needs to be performed by a professional and the result needs to be interpreted by a physician. Easy to

use and cost-effectiveness devices for carotid artery imaging increase the usability of ultrasound technique for stroke risk

prediction.

A wearable ultrasonic neck brace-like device is developed for convenient lumen diameter, which associates with CIMT,

monitoring without the limitation of time and location . The vertically aligned transducer array of the device avoids the

measurement error that often happens during hand operation. Nevertheless, the locations of ultrasound transducers are

user controlled and not easy to modify as handhold transducers, which can result in incomprehensive results.

Although CIMT is a common risk factor includes in the scoring systems for stroke risk prediction, in recent years research

investigations suggest that the parameters of the instability of carotid plaques contribute more on stroke risk . The

characterized parameters of carotid plaques include the morphology, the composition, the biomechanical force, and other

properties . These parameters help to identify the vulnerable plaques, which might rupture and then protrude

the lumen resulting in serious stenosis or block completely the blood flow at the stenotic area. Moreover, the debris from

the ruptured plaque can move to small vessels in the brain and impede the hemodynamic status resulting in embolic
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stroke, which accounts for approximately 18–25% of ischemic stroke . The morphologies of carotid plaque need to be

carefully scanned using both transverse and sagittal projections enabling overall images for instability validation.

Unfortunately, there are no wearable ultrasound devices providing morphology characterization of the carotid plaques

nowadays due to the limited adjustment angles of ultrasound transducers embedded in a wearable device. With the

increase in the flexibility of the ultrasound transducer probes, a self-guided positioning system, and optimized algorithms

for images analysis, a smart wearable ultrasound device for plaque quantification can be helpful for stroke risk prediction.

2.5.2. TCD for Cerebral Microembolization Monitoring

TCD ultrasonography is a specialized ultrasound technique to measure cerebral blood flow (CBF) and cerebrovascular

hemodynamics resulted from various physiological as well as pathological states . TCD detects micro-embolic signals

(MES) in cerebral vessels in real-time. The frequency of MES during a 1-h TCD monitoring at entry point or at 6, 12, 18

months can predict risk of stroke over the subsequent 6-month period . Other hemodynamic parameters, such as

mean flow velocity, peak systolic and end diastolic flow velocities, and vasomotor reactivity measured using TCD are

potential risk factors for stroke prediction . It is found that the increasing mean flow velocity measured from middle

cerebral artery implies higher stroke risk.

The limitation of TDC is that the high-quality signals are hardly obtained since they are prone to motion artifacts. Besides,

any physiologic changes impact the blood flow velocity, so the measured velocity change must take the related variables

into account . In addition, experienced operators are highly dependent to obtain high quality TCD signals using

optimal acoustic window and probe orientation . Therefore, limited prototypes of wearable TCD for cerebrovascular

parameters monitoring are proposed to the best of our knowledge . The TCD transducer is placed on the

transtemporal location using a pair of glasses or a headband limiting the flexibility of adjusting the transducer probe freely

to other optimal position for imaging. In addition, the algorithm needs to be improved for better acoustic window finding

methods. Besides the improvement of TCD transducer positioning, the algorithm of automated embolic signals detection

technique is needed to increase the benefit of TCD on stroke risk prediction.

2.6. Gait and Motion Monitoring

When stroke cases occur, the patients experience muscle-related difficulties, such as blindness or blurred vision, unclear

voice, walking or maintaining balance problem, difficulty moving some muscles, and weakness in the limbs or muscles.

A gait monitoring system including an accelerometer and pressure sensors to record gait speed, foot pressure, and

ground reaction force is proposed for stroke risk prediction . Another promising system for stroke risk prediction is

developed to perform gait analysis without specific alignment motions. The algorithm along with the system distinguishes

the level of disability of stroke survivors by analyzing the asymmetry of gait parameters measured from lower limbs .

Another study statistically analyzes gait nonlinear patterns to distinguish healthy young subjects (23–29 years old),

healthy elderly subjects (71–77 years old), and patients with Parkinson’s disease. The complexity measures, walking

stride time series, can be potential parameters to predict the risk of stroke . The machine learning technique is used to

extract the features and perform classification. In addition, wearable sensors for motion and surface electromyography

(EMG) monitoring are widely used to evaluate the rehabilitation of muscle function and motion ability on stroke patients

. The EMG signals indicating the transformation of impaired to normal condition of muscles can be applied as features

to predict the occurrence of stroke when a part of muscle function is weakened. A wireless body area network composed

of multiple sensor nodes and machine learning algorithms are applied to analyze the motion performed by human body.

This is a promising system for stroke risk prediction .

Besides the loss of muscle function of the limbs, the ocular muscles often become uncontrolled in stroke patients.

Therefore, a goggle which combines a pair of glasses and a motion detecting camera is designed by Neurobit for early

stroke detection or prediction . By recording the eye movements when a subject is performing the assigned tasks, the

algorithm of the system stratifies the risk of stroke. Moreover, people with stroke can experience difficulties in speaking

clearly and fluently. A mobile application program is developed to predict risk of stroke by analyzing the users’ voice input

.

2.7. Devices for EEG Monitoring

The above presented devices, except TCD, monitor the physiological parameters indirectly related to cerebrovascular

itself. Wearable devices enabling brain activities monitoring should increase the prediction outcome. Since the changes of

cerebral blood flow impact the activities of neurons, EEG signals contain stroke risk predictors. The alpha waves decline

when the CBF decreases. The theta and delta waves appear when the CBF further decreases . Besides the sub

bands analysis of EEG, the local brain symmetry index (BSI), relevant delta power, and relative local delta to alpha ratio

(DAR) calculated from the recorded EEG signals are used as indices for detecting stroke.

2.8. fNIRS Devices for Hemodynamic Signals Monitoring

Neural electrical activities recorded using EEG are associated with the cerebral hemodynamic, which can be monitored

using functional near-infrared spectroscopy (fNIRS). This neurovascular coupling means that when neuron activity

arouses, CBF around the area increases to supply more oxygen for neuron activity. fNIRS measures the concentration
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change of oxygenated hemoglobin ([HbOxy]) and that of deoxygenated hemoglobin ([HbDeoxy]) . Together with the

derived parameters, HbT (the combination of the previous two parameters) and rSO  (regional cerebral tissue

oxygenation), these values are used to evaluate the hemodynamic states of stroke patients.

3. Comparison and Combination of Various Techniques

We introduced various mobile-based and wearable devices facilitating monitoring of stroke risk factors. Each one of these

techniques is based on different measuring principles and the measured physiological parameters are used to evaluate

the abnormalities occurs from different parts of the body, such as cardiovascular and neurovascular systems (Table 2).

The comparison of these technologies and the possibility of integrating them in an IoT platform for stroke risk prediction

are discussed below.

Table 2. Detected risk factors and the percentage of them accounting for stroke.

Risk Factors Percentage of Stroke-Related
Risk Factor Detection/Characterization Method

Lifestyle behaviors (combining many

factors)
75% Questionnaires

Hypertension 50%
Wearables to measure vascular related

parameters

Air pollution 30% APP on smart phone

Atrial fibrillation and abnormal

electrocardiogram (ECG)
20% Wearables to measure ECG

Carotid plaque 15% Carotid ultrasound

Intracranial Atherosclerosis 10% Transcranial Doppler (TCD)

Table 3 compares these techniques based on various requirements of wearable devices, such as cost, weight,

accessibility, response time, user friendliness, etc. The size and weight of the devices are associate with their cost,

accessibility, and frequency of use. The more compact of the devices, with lighter forms and with less skin area covered

when worn, result in higher user comfort. The user-friendly devices are mobile phones (with a scoring questionnaire or an

air pollution sensor on it) and an insole gait monitoring system. The ECG chest patches, and PPG wristbands come after.

The TCD headbands, and EEG-fNIRS caps rank after. CT and MRI are the bulkiest among all these devices.

Table 3. Comparison of computed tomography (CT), magnetic resonance imaging (MRI) (the gold standard for brain

imaging) and various prediction technologies. More ‘+’ sign means the wearable technology meets the characteristic

more.

Question-
Naires via
Mobile APP

Mobile
Phone, Air
Pollution
Sensor

ECG PPG

Carotid
Ultra-
Sound
Neckband

TCD
Headband

Accelerometer
+ Pressure
Sensors

Goggle EMG EEG fNIRS

Compact, light

weighted
++++ ++++ +++ +++ +++ ++ ++++ +++ +++ ++

Low-cost of

the

equipment/per

test

++++ ++++ +++ +++ +++ ++ ++++ +++ +++ ++

Accessibility ++++ ++++ +++ +++ + + +++ ++ +++ ++

Self-service

(No assistant

needed)

++++ ++++ ++++ ++++ ++ + ++++ ++++ ++++ ++
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Question-
Naires via
Mobile APP

Mobile
Phone, Air
Pollution
Sensor

ECG PPG

Carotid
Ultra-
Sound
Neckband

TCD
Headband

Accelerometer
+ Pressure
Sensors

Goggle EMG EEG fNIRS

Frequency of

test (++++:

anytime, +:

only when

needed)

++++ ++++ ++++ ++++ +++ + ++++ +++ ++++ +++

Short

preparation

and response

time

++ ++++ ++++ ++++ +++ +++ ++++ ++++ ++++ +++

Data

continuity
+ ++++ ++++ ++++ +++ +++ ++++ ++++ ++++ ++++

High time

resolution
NA ++++ ++++ ++ ++++ +++ +++ +++ ++++ ++++

High spatial

resolution
NA NA + ++ ++ ++ ++ +++ +++ ++

Broad field of

view
NA NA ++ + + ++ +++ ++ ++ ++++

Often used in

which stage of

stroke course

Prediction Prediction
Predic-

tion

Predic-

tion
Prediction Prediction

Prediction,

rehabilitation

Detec-

tion

Detec-

tion,

rehabili-

tation

Rehabilita

The accessibility of most devices is proportional to their cost and weight, except for carotid ultrasound neckbands and

TCD headbands. The wearable devices of these two technologies are not as mature as other devices. Most devices have

a short preparation and response time which assures data continuity during real-time monitoring. However, answering the

questionnaires on the mobile phones can take up to five minutes, slowing down their response time. The preparation,

measurement, and interpretation time of CT and MRI can take at least an hour, which are the longest among all devices.

Regarding the recorded data, ECG and EEG provide high time resolution data, but it is difficult to specify the locations of

lesions when abnormal signals are detected. Compared with the large number of the sensors of EEG or fNIRS devices

(EEG can have up to 256 EEG electrodes) which can provide information on the overall brain area, the limited number of

the sensors of PPG devices, carotid ultrasound neckbands, and TCD headbands restricts the field of view provided by

these devices.

To increase the accuracy of the interpretation of risk of stroke, several techniques in an IoT network are combined,

facilitating the collection of various physiological parameters. This broadens the applications for various diseases and

enhances the prediction ability of a prediction system . One system is composed of watches for blood glucose, blood

pressure, and heart rate monitoring .

Another system includes a wristband and two Doppler detectors to measure blood pressure and the blood flow of the

internal carotid artery and cerebral major artery, respectively . Still another system includes an ECG as well as foot

pressure sensors and an accelerometer placed into the insole to measure the gait acceleration, foot pressure, ground

reaction force, and other gait signals . Together with the signal processing and decision-making algorithm, the

results of stroke risk stratification are sent to the users as well as the clinical staff. However, these systems all are not

applied to stratify the risk of stroke of those with no stroke before. They are applied either to predict the reoccurrence of

stroke on patients had transient ischemic attack (TIA) or used to classified patients with stroke and healthy subject.

Another IoT system is proposed to predict wake-up stroke, which happens during night-time sleep or within 30 min of

awakening . The system includes various wearable sensors, such as EEG, ECG, EMG, electrooculography (EOG),

PPG, and polysomnography, for stroke-related physiological parameters measurements. In addition, the modifiable and

non-modifiable risk factors and EHRs are also included in their prediction system. To precisely predict stroke, using the
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[97]

[98]

[83][84]

[92]



tremendous amount of data collected by the wearable sensors and other resources, machine learning (ML) approaches

are needed. To the best of our knowledge, there is no well-developed IoT system including multimodal sensors for stroke

risk prediction published in journal papers or announced in public.
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