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Embedded machine learning (EML) can be applied in the areas of accurate computer vision schemes, reliable speech

recognition, innovative healthcare, robotics, and more. However, there exists a critical drawback in the efficient

implementation of ML algorithms targeting embedded applications.  Machine learning algorithms are generally

computationally and memory intensive, making them unsuitable for resource-constrained environments such as

embedded and mobile devices. In order to efficiently implement these compute and memory-intensive algorithms within

the embedded and mobile computing space, innovative optimization techniques are required at the algorithm and

hardware levels. 
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1. Introduction

Machine learning is a branch of artificial intelligence that describes techniques through which systems learn and make

intelligent decisions from available data. Machine learning techniques can be classified under three major groups, which

are supervised learning, unsupervised learning, and reinforcement learning as described in  Table 1. In supervised

learning, labeled data can be learned while in unsupervised learning, hidden patterns can be discovered from unlabeled

data, and in reinforcement learning, a system may learn from its immediate environment through the trial and error

method . The process of learning is referred to as the  training phase of the model and is often carried out using

computer architectures with high computational resources such as multiple GPUs. After learning, the trained model is then

used to make intelligent decisions on new data. This process is referred to as the inference phase of the implementation.

The inference is often intended to be carried out within user devices with low computational resources such as IoT and

mobile devices.

Table 1. Machine learning techniques.

Machine Learning Techniques

Supervised Learning Unsupervised Learning Reinforcement Learning

Classification Regression Clustering Genetic Algorithms

SVM SVR HMM Estimated Value Functions

Naïve Bayes Linear Regression GMM Simulated Annealing

k-NN Decision Trees k-means  

Logistic Regression ANN DNN  

Discriminant Analysis Ensemble Methods    

DNN DNN    

In recent times, machine learning techniques have been finding useful applications in various research areas and

particularly in embedded computing systems. In this research, we surveyed recent works of literature concerning machine

learning techniques implemented within resource-scarce environments such as mobile devices and other IoT devices

between 2014 and 2020. We present the results of this survey in a tabular form given in Table 2. Our survey revealed that

of all available machine learning techniques, SVMs, GMMs, DNNs, k-NNs, HMMs, decision trees, logistic regression, k-

means, and naïve Bayes are common techniques adopted for embedded and mobile applications. Naïve Bayes and

decision trees have low complexity in terms of computation and memory costs and thus do not require innovative

optimizations as pointed out by Sayali and Channe [37]. Logistic regression algorithms are computationally cheaper than
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naïve Bayes and decision trees, meaning they have even lower complexity [38]. HMMs, k-NNs, SVMs, GMMs, and DNNs

are however computationally and memory intensive and hence, require novel optimization techniques to be carried out to

be efficiently squeezed within resource-limited environments. We have thus limited our focus to these compute intensive

ML models and discuss state-of-the-art optimization techniques through which these algorithms may be efficiently

implemented within resource-constrained environments.

Table 2. Machine Learning Techniques in Resource-Constrained Environments.

Reference ML Method Embedded/Mobile Platform Application Year

SVM ARMv7, IBM PPC440 Network Configuration 2015

DNN FPGA Zedboard with 2 ARM Cortex
Cores Character Recognition 2015

DNN Xilinx FPGA board Image classification 2016

LSTM RNN Zynq 7020 FPGA Character Prediction 2016

CNN VC707 Board with Xilinx FPGA chip Image Classification 2015

GMM Raspberry Pi Integer processing 2014

k-NN, SVM Mobile Device Fingerprinting 2014

k-NN Mobile Device Fingerprinting 2014

k-NN, GMM Mobile Device Mobile Device Identification 2015

SVM Xilinx Virtex 7 XC7VX980 FPGA Histopathological image
classification 2015

HMM Nvidia Kepler Speech Recognition 2015

Logistic Regression Smart band Stress Detection 2015

k-means Smartphone Indoor Localization 2015

Naïve Bayes AVR ATmega-32 Home Automation 2015

k-NN Smartphone Image Recognition 2015

Decision Tree Mobile Device Health Monitoring 2015

GMM FRDM-K64F equipped with ARM
Cortex-M4F core IoT sensor data analysis 2016

CNN FPGA Xilinx Zynq ZC706 Board Image Classification 2016

CNN Mobile Device Mobile Sensing 2016

SVM Mobile Device Fingerprinting 2016

k-NN, SVM Mobile Device Fingerprinting 2016

k-NN Xilinx Virtex-6 FPGA Image Classification 2016

HMM Arduino UNO Disease detection 2016

Logistic Regression Wearable Sensor Stress Detection 2016

Naïve Bayes Smartphone Health Monitoring 2016

Naïve Bayes Mobile Devices Emotion Recognition 2016

k-NN Smartphone Data Mining 2016

HMM Smartphone Sensors Activity Recognition 2017

DNN Smartphone Face detection, activity
recognition 2017

CNN Mobile Device Image classification 2017

SVM Mobile Device Mobile Device Identification 2017

SVM Jetson-TK1 Healthcare 2017
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Reference ML Method Embedded/Mobile Platform Application Year

SVM, Logistic Regression Arduino UNO Stress Detection 2017

Naïve Bayes Smartphone Emotion Recognition 2017

k-means Smartphones Safe Driving 2017

HMM Mobile Device Health Monitoring 2017

k-NN Arduino UNO Image Classification 2017

SVM Wearable Device (nRF51822
SoC+BLE) Battery Life Management 2018

SVM Zybo Board with Z-7010 FPSoC Face Detection 2018

CNN Raspberry Pi + Movidus Neural
Compute Stick Vehicular Edge Computing 2018

CNN Jetson TX2 Image Classification 2018

HMM Smartphone Healthcare 2018

k-NN Smartphone Health Monitoring 2019

Decision Trees Arduino UNO Wound Monitoring 2019

RNN ATmega640 Smart Sensors 2019

SVM, Logistic Regression, k-
means, CNN Raspberry Pi Federated Learning 2019

DNN Raspberry Pi Transient Reduction 2020

MLP Embedded SoC (ESP4ML) Classification 2020

HMM Smartphone Indoor Localization 2020

k-NN Smartphone Energy Management 2020

ANN, Decision Trees Raspberry Pi Classification and Regression 2021

2. Challenges and Optimization Opportunities in Embedded Machine
Learning

Embedded computing systems are generally limited in terms of available computational power and memory requirements.

Furthermore, they are required to consume very low power and to meet real-time constraints. Thus, for these

computationally intensive machine learning models to be executed efficiently in the embedded systems space,

appropriate optimizations are required both at the hardware architecture and algorithm levels . In this section, we

survey optimization methods to tackle bottlenecks in terms of power consumption, memory footprint, latency concerns,

and throughput and accuracy loss.

2.1. Power Consumption

The total energy consumed by an embedded computing application is the sum of the energy required to fetch data from

the available memory storage and the energy required to perform the necessary computation in the processor. Table 3
shows the energy required to perform different operations in an ASIC. It can be observed from Table 3 that the amount of

energy required to fetch data from the SRAM is much less, than when fetching data from the off-chip DRAM and very

minimal if the computation is done at the register files. From this insight, we can conclude that computation should be

done as close to the processor as possible to save energy. However, this is a bottleneck because the standard size of

available on-chip memory in embedded architectures is very low compared to the size of deep learning models .

Algorithmic-based optimization techniques for model compression such as parameter pruning, sparsity, and quantization

may be applied to address this challenge . Also, hardware design-based optimizations such as Tiling and data reuse

may be utilized . The next section expatiates some of these optimization methods in further detail. Furthermore, most

machine-learning models, especially deep learning models, require huge amounts of multiply and accumulate (MAC)

operations for effective training and inference. Figure 1 describes the power consumed by the MAC unit as a function of

the bit precision adopted by the system. We may observe that the higher the number of bits, the higher the power
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consumed. Thus, to reduce the power consumed during computation, reduced bit precision arithmetic and data

quantization may be utilized .

Figure 1. This graph describes the energy consumption and prediction accuracy of a DNN as a function of the Arithmetic

Precision adopted for a single MAC unit in a 45 nm CMOS . It may be deduced from the graph that lower number

precisions consume less power than high precisions with no loss in prediction accuracy. However, we can observe that

when precision is reduced below a particular threshold (16 bit fp), the accuracy of the model is greatly affected. Thus,

quantization may be performed successfully to conserve energy but quantizing below 16-bit fp may require retraining and

fine-tuning to restore the accuracy of the model.

Table 3. Energy Consumption in (pJ) of performing operations.

Operation Energy (pJ)

8 bit int ADD 0.03

16 bit int ADD 0.05

32 bit int ADD 0.1

16 bit float ADD 0.4

32 bit float ADD 0.9

8 bit MULT 0.2

32 bit MULT 3.1

16 bit float MULT 1.1

32 bit float MULT 3.7

32 bit SRAM READ 5.0

32 bit DRAM READ 640

Source: Bill Dally, Cadence Embedded Neural Network Summit, 1 February 2017.

2.2. Memory Footprint

The available on-chip and off-chip memory in embedded systems are very limited compared to the size of ML parameters

(synapses and activations) . Thus, there is a bottleneck for storing model parameters and activations within this

constrained memory. Network pruning (removing redundant parameters)  and data quantization  (reducing the

number of bits used to represent model parameters) are the primary optimization techniques adopted to significantly

compress the overall model size such that they can fit into the standard memory sizes of embedded computers.

2.3. Latency and Throughput Concerns

Embedded systems are required to meet real-time deadlines. Thus, latency and overall throughput can be a major

concern as an inability to meet these tight constraints could sometimes result in devastating consequences. The

parameters of deep learning models are very large and are often stored off-chip or in external SDCARDs, which
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introduces latency concerns. Latency results from the time required to fetch model parameters from off-chip DRAM or

external SDCARDs before appropriate computation can be performed on these parameters . Thus, storing the

parameters as close as possible to the computation unit using Tiling and data reuse, hardware-oriented direct memory

access (DMA) optimization techniques would reduce the latency and thus, inform high computation speed . In addition,

because ML models require a high level of parallelism for efficient performance, throughput is a major issue. Memory

throughput can be optimized by introducing pipelining .

2.4. Prediction Accuracy

Although deep learning models are tolerant of low bit precision , reducing the bit precision below a certain threshold

could significantly affect the prediction accuracy of these models and introduce no little errors, which could be costly for

the embedded application. To address the errors which model compression techniques such as reduced precision or

quantization introduce, the compressed model can be retrained or fine-tuned to improve precision accuracy .

2.5. Some Hardware-Oriented and Algorithm-Based Optimization Techniques

Hardware acceleration units may be designed using custom FPGAs or ASICs to inform low latency and high throughput.

These designs are such that they may optimize the data access from external memory and/or introduce an efficient

pipeline structure using buffers to increase the throughput of the architecture. In sum, some hardware-based optimization

techniques are presented in this section to guide computer architects in designing and developing highly efficient

acceleration units to inform high performance

References

1. Frank, M.; Drikakis, D.; Charissis, V. Machine-learning methods for computational science and engineering. Computati
on 2020, 8, 15.

2. Xiong, Z.; Zhang, Y.; Niyato, D.; Deng, R.; Wang, P.; Wang, L.C. Deep reinforcement learning for mobile 5G and beyon
d: Fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 2019, 14, 44–52.

3. Carbonell, J.G. Machine learning research. ACM SIGART Bull. 1981, 18, 29.

4. Jadhav, S.D.; Channe, H.P. Comparative STUDY of K-NN, naive bayes and decision tree classification techniques. Int.
J. Sci. Res. 2016, 5, 1842–1845.

5. Chapter 4 Logistic Regression as a Classifier. Available online: (accessed on 29 December 2020).

6. Haigh, K.Z.; Mackay, A.M.; Cook, M.R.; Lin, L.G. Machine Learning for Embedded Systems: A Case Study; BBN Techn
ologies: Cambridge, MA, USA, 2015; Volume 8571, pp. 1–12.

7. Yu, Q.; Wang, C.; Ma, X.; Li, X.; Zhou, X. A deep learning prediction process accelerator based FPGA. In Proceedings
of the 2015 IEEE/ACM 15th International Symposium Cluster Cloud, Grid Computer CCGrid 2015, Shenzhen, China, 4
–7 May 2015; pp. 1159–1162.

8. Wang, C.; Gong, L.; Yu, Q.; Li, X.; Xie, Y.; Zhou, X. DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Tr
ans. Comput. Des. Integr. Circuits Syst. 2016, 36, 513–517.

9. Chang, A.X.M.; Martini, B.; Culurciello, E. Recurrent Neural Networks Hardware Implementationon FPGA. Available onl
ine: (accessed on 15 January 2021).

10. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based accelerator design for deep convolution
al neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arr
ays, Monterey, CA, USA, 22–24 February 2015; pp. 161–170.

11. Salvadori, C.; Petracca, M.; del Rincon, J.M.; Velastin, S.A.; Makris, D. An optimisation of Gaussian mixture models for
integer processing units. J. Real Time Image Process. 2017, 13, 273–289.

12. Das, A.; Borisov, N.; Caesar, M. Do you hear what i hear? Fingerprinting smart devices through embedded acoustic co
mponents. In Proceedings of the ACM Conference on Computer, Communication and Security, Scottsdale, AZ, USA, 3
–7 November 2014; pp. 441–452.

13. Bojinov, H.; Michalevsky, Y.; Nakibly, G.; Boneh, D. Mobile Device Identification via Sensor Fingerprinting. Available onli
ne: (accessed on 12 January 2021).

14. Huynh, M.; Nguyen, P.; Gruteser, M.; Vu, T. Mobile device identification by leveraging built-in capacitive signature. In Pr
oceedings of the ACM Conference on Compututer, Communication and Security, Denver, CO, USA, 12–16 October 20
15; pp. 1635–1637.

[58]

[61]

[5]

[62]

[57][58][63][64]



15. Dhar, S.; Sreeraj, K.P. FPGA implementation of feature extraction based on histopathalogical image and subsequent cl
assification by support vector machine. IJISET Int. J. Innov. Sci. Eng. Technol. 2015, 2, 744–749.

16. Yu, L.; Ukidave, Y.; Kaeli, D. GPU-accelerated HMM for speech recognition. In Proceedings of the International Confer
ence Parallel Processing Work, Minneapolis, MN, USA, 9–12 September 2014; pp. 395–402.

17. Zubair, M.; Yoon, C.; Kim, H.; Kim, J.; Kim, J. Smart wearable band for stress detection. In Proceedings of the 2015 5th
International Conference IT Converg. Secur. ICITCS, Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–4.

18. Razavi, A.; Valkama, M.; Lohan, E.S. K-means fingerprint clustering for low-complexity floor estimation in indoor mobile
localization. In Proceedings of the 2015 IEEE Globecom Work. GC Wkshps 2015, San Diego, CA, USA, 6–10 Decemb
er 2015.

19. Bhide, V.H.; Wagh, S. I-learning IoT: An intelligent self learning system for home automation using IoT. In Proceedings
of the 2015 International Conference Communication Signalling Process. ICCSP 2015, Melmaruvathur, India, 2–4 April
2015; pp. 1763–1767.

20. Munisami, T.; Ramsurn, M.; Kishnah, S.; Pudaruth, S. Plant Leaf recognition using shape features and colour histogra
m with K-nearest neighbour classifiers. Proc. Comput. Sci. 2015, 58, 740–747.

21. Sowjanya, K.; Singhal, A.; Choudhary, C. MobDBTest: A machine learning based system for predicting diabetes risk usi
ng mobile devices. In Proceedings of the Souvenir 2015 IEEE Int. Adv. Comput. Conference IACC 2015, Banglore, Indi
a, 12–13 June 2015; pp. 397–402.

22. Lee, J.; Stanley, M.; Spanias, A.; Tepedelenlioglu, C. Integrating machine learning in embedded sensor systems for Inte
rnet-of-Things applications. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Infor
mation Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 290–294.

23. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedde
d FPGA platform for convolutional neural network. In Proceedings of the FPGA 2016ACM/SIGDA International Symposi
um Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

24. Huynh, L.N.; Balan, R.K.; Lee, Y. DeepSense: A GPU-based deep convolutional neural network framework on commodi
ty mobile devices. In Proceedings of the Workshop on Wearable Systems and Application Co-Located with MobiSys 20
16, Singapore, 30 June 2016; pp. 25–30.

25. Tuama, A.; Comby, F.; Chaumont, M. Camera model identification based machine learning approach with high order st
atistics features. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary,
29 August–2 September 2016; pp. 1183–1187.

26. Kurtz, A.; Gascon, H.; Becker, T.; Rieck, K.; Freiling, F. Fingerprinting Mobile Devices Using Personalized Configuration
s. Proc. Priv. Enhanc. Technol. 2016, 1, 4–19.

27. Mohsin, M.A.; Perera, D.G. An FPGA-based hardware accelerator for k-nearest neighbor classification for machine lear
ning on mobile devices. In Proceedings of the ACM International Conference Proceeding Series, HEART 2018, Toront
o, ON, Canada, 20–22 June 2018; pp. 6–12.

28. Patil, S.S.; Thorat, S.A. Early detection of grapes diseases using machine learning and IoT. In Proceedings of the 2016
Second International Conference on Cognitive Computing and Information Processing (CCIP), Mysuru, India, 12–13 Au
gust 2016.

29. Ollander, S.; Godin, C.; Campagne, A.; Charbonnier, S. A comparison of wearable and stationary sensors for stress det
ection. In Proceedings of the IEEE International Conference System Man, and Cybernetic SMC 2016, Budapest, Hung
ary, 9–12 October 2016; pp. 4362–4366.

30. Moreira, M.W.L.; Rodrigues, J.J.P.C.; Oliveira, A.M.B.; Saleem, K. Smart mobile system for pregnancy care using body
sensors. In Proceedings of the International Conference Sel. Top. Mob. Wirel. Networking, MoWNeT 2016, Cairo Egyp
t, 11–13 April 2016; pp. 1–4.

31. Shapsough, S.; Hesham, A.; Elkhorazaty, Y.; Zualkernan, I.A.; Aloul, F. Emotion recognition using mobile phones. In Pr
oceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthc
om), Munich, Germany, 14–16 September 2016; pp. 276–281.

32. Hakim, A.; Huq, M.S.; Shanta, S.; Ibrahim, B.S.K.K. Smartphone based data mining for fall detection: Analysis and desi
gn. Proc. Comput. Sci. 2016, 105, 46–51.

33. Ronao, C.A.; Cho, S.B. Recognizing human activities from smartphone sensors using hierarchical continuous hidden M
arkov models. Int. J. Distrib. Sens. Netw. 2017, 13, 1–16.

34. Kodali, S.; Hansen, P.; Mulholland, N.; Whatmough, P.; Brooks, D.; Wei, G.Y. Applications of deep neural networks for u
ltra low power IoT. In Proceedings of the 35th IEEE International Conference on Computer Design ICCD 2017, Boston,
MA, USA, 5–8 November 2017; pp. 589–592.



35. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolution neural network for mobile devices. I
n Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 6848–6856.

36. Baldini, G.; Dimc, F.; Kamnik, R.; Steri, G.; Giuliani, R.; Gentile, C. Identification of mobile phones using the built-in mag
netometers stimulated by motion patterns. Sensors 2017, 17, 783.

37. Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Pahikkala, T.; Levorato, M.; Liljeberg, P.; Dutt, N. HiCH: Hierarchical fog-assist
ed computing architecture for healthcare IoT. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–20.

38. Pandey, P.S. Machine Learning and IoT for prediction and detection of stress. In Proceedings of the 17th International
Conference on Computational Science and Its Applications ICCSA 2017, Trieste, Italy, 3–6 July 2017.

39. Sneha, H.R.; Rafi, M.; Kumar, M.V.M.; Thomas, L.; Annappa, B. Smartphone based emotion recognition and classificati
on. In Proceedings of the 2nd IEEE International Conference on Electrical, Computer and Communication Technology I
CECCT 2017, Coimbatore, India, 22–24 February 2017.

40. Al Mamun, M.A.; Puspo, J.A.; Das, A.K. An intelligent smartphone based approach using IoT for ensuring safe driving. I
n Proceedings of the 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), Pale
mbang, Indonesia, 22–23 August 2017; pp. 217–223.

41. Neyja, M.; Mumtaz, S.; Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Zhou, Z. An IoT-based e-health monitoring system usi
ng ECG signal. In Proceedings of the IEEE Global Communications Conference GLOBECOM 2017, Singapore, 4–8 D
ecember 2017; pp. 1–6.

42. Gupta, C.; Suggala, A.S.; Goyal, A.; Simhadri, H.V.; Paranjape, B.; Kumar, A.; Goyal, S.; Udupa, R.; Varma, M.; Jain, P.
ProtoNN: Compressed and accurate kNN for resource-scarce devices. In Proceedings of the 34th International Confere
nce on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1331–1340.

43. Fafoutis, X.; Marchegiani, L.; Elsts, A.; Pope, J.; Piechocki, R.; Craddock, I. Extending the battery lifetime of wearable s
ensors with embedded machine learning. In Proceedings of the IEEE World Forum on Internet Things, WF-IoT 2018, Si
ngapore, 5–8 February 2018; pp. 269–274.

44. Damljanovic, A.; Lanza-Gutierrez, J.M. An embedded cascade SVM approach for face detection in the IoT edge layer. I
n Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, D
C, USA, 21–23 October 2018; pp. 2809–2814.

45. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded deep learning for vehicular edge computing. In Pro
ceedings of the 3rd ACM/IEEE Symposium on Edge Computing SEC 2018, Seattle, WA, USA, 25–27 October 2018; p
p. 341–343.

46. Taylor, B.; Marco, V.S.; Wolff, W.; Elkhatib, Y.; Wang, Z. Adaptive deep learning model selection on embedded systems.
ACM SIGPLAN Not. 2018, 53, 31–43.

47. Strielkina, A.; Kharchenko, V.; Uzun, D. A markov model of healthcare internet of things system considering failures of c
omponents. CEUR Workshop Proc. 2018, 2104, 530–543.

48. Vhaduri, S.; van Kessel, T.; Ko, B.; Wood, D.; Wang, S.; Brunschwiler, T. Nocturnal cough and snore detection in noisy
environments using smartphone-microphones. In Proceedings of the IEEE International Conference on Healthcare Info
rmatics, ICHI 2019, Xi’an, China, 10–13 June 2019.

49. Sattar, H.; Bajwa, I.S.; Amin, R.U.; Sarwar, N.; Jamil, N.; Malik, M.A.; Mahmood, A.; Shafi, U. An IoT-based intelligent w
ound monitoring system. IEEE Access 2019, 7, 144500–144515.

50. Mengistu, D.; Frisk, F. Edge machine learning for energy efficiency of resource constrained IoT devices. In Proceedings
of the Fifth International Conference on Smart Portable, Wearable, Implantable and Disabilityoriented Devices and Syst
ems, SPWID 2019, Nice, France, 28 July–1 August 2019; pp. 9–14.

51. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive Federated Learning in Resource C
onstrained Edge Computing Systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221.

52. Suresh, P.; Fernandez, S.G.; Vidyasagar, S.; Kalyanasundaram, V.; Vijayakumar, K.; Archana, V.; Chatterjee, S. Reduct
ion of transients in switches using embedded machine learning. Int. J. Power Electron. Drive Syst. 2020, 11, 235–241.

53. Giri, D.; Chiu, K.L.; di Guglielmo, G.; Mantovani, P.; Carloni, L.P. ESP4ML: Platform-based design of systems-on-chip f
or embedded machine learning. In Proceedings of the 2020 Design, Automation and Test in European Conference Exhi
bition DATE 2020, Grenoble, France, 9–13 March 2020; pp. 1049–1054.

54. Tiku, S.; Pasricha, S.; Notaros, B.; Han, Q. A hidden markov model based smartphone heterogeneity resilient portable i
ndoor localization framework. J. Syst. Archit. 2020, 108, 101806.



55. Mazlan, N.; Ramli, N.A.; Awalin, L.; Ismail, M.; Kassim, A.; Menon, A. A smart building energy management using intern
et of things (IoT) and machine learning. Test. Eng. Manag. 2020, 83, 8083–8090.

56. Cornetta, G.; Touhafi, A. Design and evaluation of a new machine learning framework for iot and embedded devices. El
ectronics 2021, 10, 600.

57. Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An Updated survey of efficient hardware
architectures for accelerating deep convolutional neural networks. Future Internet 2020, 12, 113.

58. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans.
Cybern. 2020, 50, 3668–3681.

59. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. In Proceedin
gs of the NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems; ACM:
New York, NY, USA, 2015; Volume 1, pp. 1135–1143.

60. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization
and Huffman coding. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puert
o Rico, 2–4 May 2016; pp. 1–14. Available online: (accessed on 17 January 2021).

61. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks w
ith low precision weights and activations. J. Mach. Learn. Res. 2018, 18, 1–30.

62. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level Accuracy With
50× Fewer Parameters and <0.5 mb Model Size. Available online: (accessed on 15 February 2021).

63. Tanaka, K.; Arikawa, Y.; Ito, T.; Morita, K.; Nemoto, N.; Miura, F.; Terada, K.; Teramoto, J.; Sakamoto, T. Communication
-efficient distributed deep learning with GPU-FPGA heterogeneous computing. In Proceedings of the 2020 IEEE Symp
osium on High-Performance Interconnects (HOTI), Piscataway, NJ, USA, 19–21 August 2020; pp. 43–46.

64. Lane, N.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C. Squeezing deep learning into mobile and embedded devices. IEE
E Pervasive Comput. 2017, 16, 82–88.

65. Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks. Available online: (accessed on
20 February 2021).

66. Moons, B.; Goetschalckx, K.; van Berckelaer, N.; Verhelst, M. Minimum energy quantized neural networks. In Proceedi
ngs of the 2017 51st Asilomar Conference on Signals, Systems, and Computers ACSSC 2017, Pacific Grove, CA, US
A, 29 October–1 November 2017; pp. 1921–1925.

Retrieved from https://encyclopedia.pub/entry/history/show/27744


