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The leaf inclination angle (LIA), defined as the leaf or needle inclination angle to the horizontal plane, is vital in

radiative transfer, precipitation interception, evapotranspiration, photosynthesis, and hydrological processes. The

remote sensing methods to estimate LIA are mainly based on the empirical, radiative transfer model, and gap

fraction methods. More advanced inversion strategies and validation studies are necessary to improve the

robustness of LIA remote sensing estimation.

leaf inclination angle  remote sensing estimation

1. Introduction

Leaf inclination angle (LIA) quantifies the inclination of the leaf or needle to the horizontal plane or the angle

between the leaf surface normal and zenith (Figure 1) . LIA is formed under the comprehensive regulation of

genes, hormones, and environmental factors, including light, water, temperature, and nutrition . LIA is a key

plant structural trait that determines radiative transfer , rainfall interception , and evapotranspiration , and

thus affects photosynthesis and hydrological processes .
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Figure 1. The schematic of leaf orientation (a) and the leaf inclination angle (LIA) measurement for broad leaf (b)

and needle leaves of cypress (c), pine (d), and spruce (e). In (e), the LIA of a specified shoot is the sum of the

average inclination angle for all needles within a horizontally placed representative shoot (  ) and the shoot

inclination angle (θs).

The probability density of LIA or the fraction of leaf area per unit LIA is expressed with the leaf angle distribution

(LAD) function . Theoretically, LAD can be categorized into the planophile, erectophile, extremophile,

plagiophile, uniform, and spherical distributions . The spherical distribution assumes that the relative probability

density of the LIA is the same as the area of the corresponding sphere surface element . LAD can also be

described by statistical distribution functions such as the ellipsoidal distribution , rotated-ellipsoidal distribution

, and two-parameter beta distribution . In radiative transfer, the leaf projection function (G(θ)) is calculated as

the average projection ratio of unit leaf area in the illumination or viewing direction θ . The spherical

distribution is characterized by an isotropic leaf projection function (G ≡ 0.5) .

Remote sensing methods provide large-scale and continuous LIA mapping based on empirical relationships,

radiative transfer model inversion, and the gap fraction method .

2. Empirical Methods

MLA can be estimated empirically from canopy reflectance or vegetation indices by constructing a transfer function

. Zou and Mõttus  found that the near-infrared (NIR) reflectance, especially in the 748 nm in the red-edge

band, showed a negative linear relationship with the crop MLA and the output MLA showed medium consistency
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with the reference MLA. They also showed that the MLA can be determined from the red and blue reflectance

space, but the estimated MLA showed poor correspondence with the reference value . Different LAD types can

also be empirically distinguished. For example, Huang, Niu, Wang, Liu, Zhao, and Liu  identified different winter

wheat LAD types from the multi-temporal NIR reflectance. In simulation studies, the backscattering coefficient of

the microwave horizontal polarization was found to correlate to LAD , but no LIA inversion studies with

microwaves have been reported.

The angular reflectance varies with MLAs and can assist the MLA estimation . The angular reflectance is

commonly described by the bidirectional reflectance distribution function (BRDF). One of the widely used BRDF

models is the semi-empirical Ross-Li model, which characterizes the bidirectional reflectance with a linear

combination of the volumetric, geometric, and isotropic kernels . The structural parameter-sensitive index (SPEI)

has been constructed from BRDF weights to identify the winter wheat LAD types .

(1)

where  and  are the weights of the isotropic and volumetric scattering kernels in the NIR band,

respectively, and   is the weight of the geometric scattering kernel in the red band .

The vegetation index (VI) has shown great potential to estimate MLA because of its simplicity and capability to

mitigate the soil background effect . Existing simulation studies have shown that the modified triangular

vegetation index (MTVI2)  and two-band enhanced vegetation index (EVI2)  are strongly correlated negatively

with MLA, especially for low and medium LAI (LAI < 3) .

(2)

(3)

where ρ , ρ , and ρ  denote the NIR, red, and green reflectances, respectively.

The empirical method is easy to use, but it relies on a large number of field measurements, which limits the

method’s generality. Currently, the method has been applied to crops with medium accuracy . The applicability of
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this method to noncrops needs to be further explored. The reflectance-based method is easily affected by LAI, leaf

dry matter content, and soil background . The method works better for the medium LAI conditions when

the impacts of those factors are suppressed . The angular reflectance has been used to distinguish

different LAD types qualitatively  and is promising for estimating LIA quantitatively. The VI method suppresses

the soil background and chlorophyll impact and more effort can be made to estimate LIA from VI in practice.

Combining multiple vegetation indices may also help decouple LIA from the LAI and leaf dry matter impact.

3. Radiative Transfer Model Methods

Radiative transfer models link canopy reflectance with a series of leaf optical properties and canopy structural

parameters (LAD, LAI, and CI) for different solar-viewing geometries . The RTM method obtains an optimal

solution that minimizes the cost function between the simulated and observed reflectance using the look-up table,

numerical optimization, and machine learning technologies . Currently, most LAD retrievals are based on the

PROSAIL model which integrates the PROSPECT leaf spectral model  and the Scattering by Arbitrarily Inclined

Leaves (SAIL) canopy bidirectional reflectance model .

Multi-angle reflectance is commonly used for LAD retrieval . For example, Jacquemoud et al.  retrieved

LAD from the ground and airborne multi-angle NIR reflectance based on the PROSAIL model but the result was

not satisfactory, especially for canopies with high LAI and horizontal LAD. Ferreira et al.  inverted the individual

crown LIA from the airborne imaging spectroscopy based on the discrete anisotropic radiative transfer (DART)

model and look-up table method. The RTM method has also been applied to estimate the seasonal grassland MLA

from the Landsat reflectance, but the result showed strong anomalous fluctuations . Currently, the RTM method

is only validated with field measurements in a direct point-to-pixel manner for crops .

The RTM method has mainly been applied in local regions, but the method is promising for large-scale LIA time

series mapping. However, the method is affected by the different LAD settings in radiative transfer models (Bacour

et al. ). The method is also affected by the ill-posed problem in the inversion process . Several

approaches have been proposed to improve LIA retrieval through regularization with prior information. One solution

is to provide background characteristics in the RTM inversion, such as the VI-LAI empirical relationship, leaf

spectral, soil reflectance, and skylight fraction . The temporal constraint assumes that the seasonal variation

of the LIA is negligible . The object-based inversion strategy exerts spatial constraint on the inversion process by

assuming that the LIAs of adjacent pixels are similar .

4. The Gap Fraction Method

The gap fraction method can also be used to estimate the global leaf projection function (G) from remote sensing

data . For example, the global nadir leaf projection function G(0) can be estimated based on the Beer–Lambert

law (Equation (1)):
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(4)

where the nadir gap fraction is calculated from the fractional vegetation cover (P(0) = 1 − FVC) and the nadir

clumping index (CI(0)) is approximated by the whole CI . However, this method to estimate G is limited by the

accuracy and consistency of remote sensing products .
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