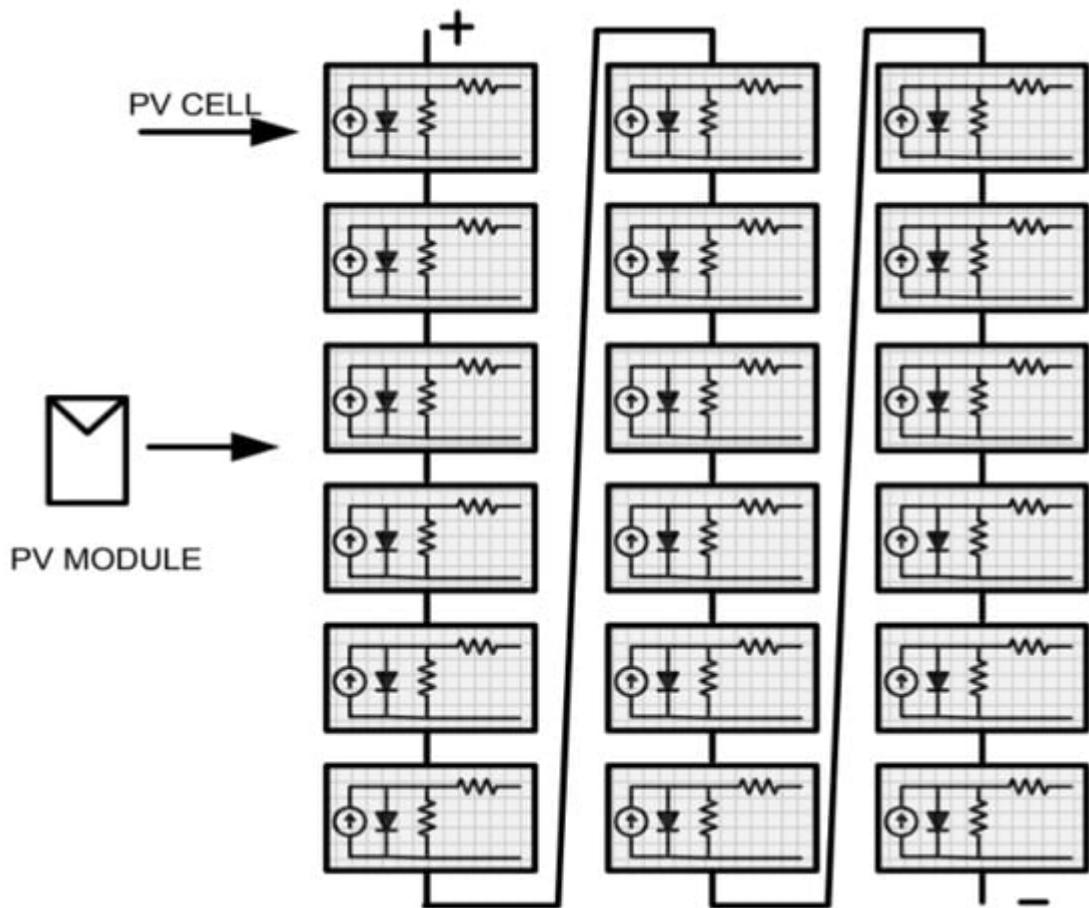


Non Linear Current-Voltage Characteristics

Subjects: **Engineering, Electrical & Electronic**

Contributor: Md Tahmid Hussain , Mohd Tariq , Adil Sarwar , Shabana Urooj , Amal BaQais , Md. Alamgir Hossain

The current-voltage (IV) curve of a solar photovoltaic (PV) array provides valuable insights into its behavior under varying conditions, including partial shading. Under normal, unshaded conditions, the IV curve depicts a characteristic shape where the current increases linearly with voltage until it reaches a peak known as the maximum power point (MPP).


solar PV

IV curve

PV power

1. Solar PV Array

A solar photovoltaic (PV) array is a collection of interconnected solar panels, each comprising multiple photovoltaic cells, designed to capture sunlight and convert it directly into electricity through the photovoltaic effect. These arrays are strategically configured to optimize solar exposure and energy capture, forming a functional unit capable of generating electrical power from the sun's radiant energy. The power output is insignificant from a single PV cell. Ten multiple cells are connected in series to form a solar panel with a much higher voltage and power rating. The panels are further connected in a series or parallel fashion, which is shown in **Figure 1**, to obtain a higher voltage and current, thereby increasing the power rating required for the application. The number of panels can go up to thousands for large PV plants that can feed power to the grid. Solar PV arrays are used for various applications, ranging from small-scale residential installations to large-scale commercial and utility-level solar farms, contributing to the generation of clean and renewable energy ^[1].

Figure 1. Formation of Solar PV module from the series connection of solar PV cells.

2. Non Linear IV Characteristics

The major issue associated with solar PV output utilization is the nonlinear IV and PV characteristics of the solar PV panel [2]. **Figure 2** and **Figure 3** show, respectively, the current-versus-voltage and power-versus-voltage curve graph of a PV module during PSC. The reverse bias effect caused by PS on a two-module system is shown in **Figure 2**.

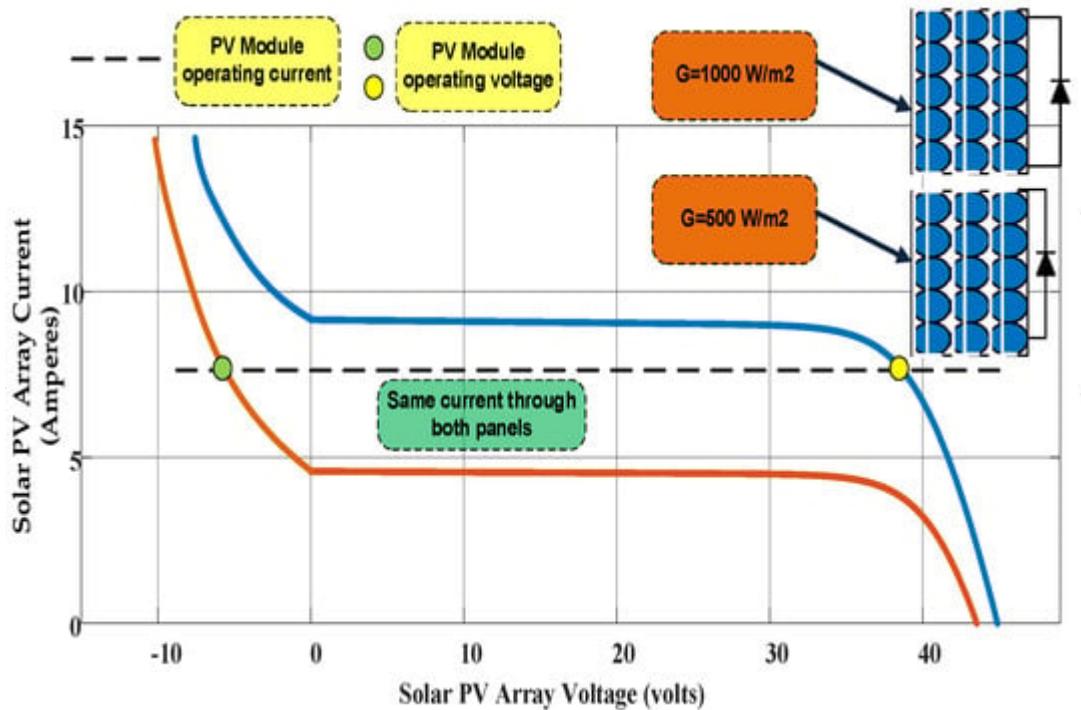


Figure 2. IV characteristic curve with PSC.

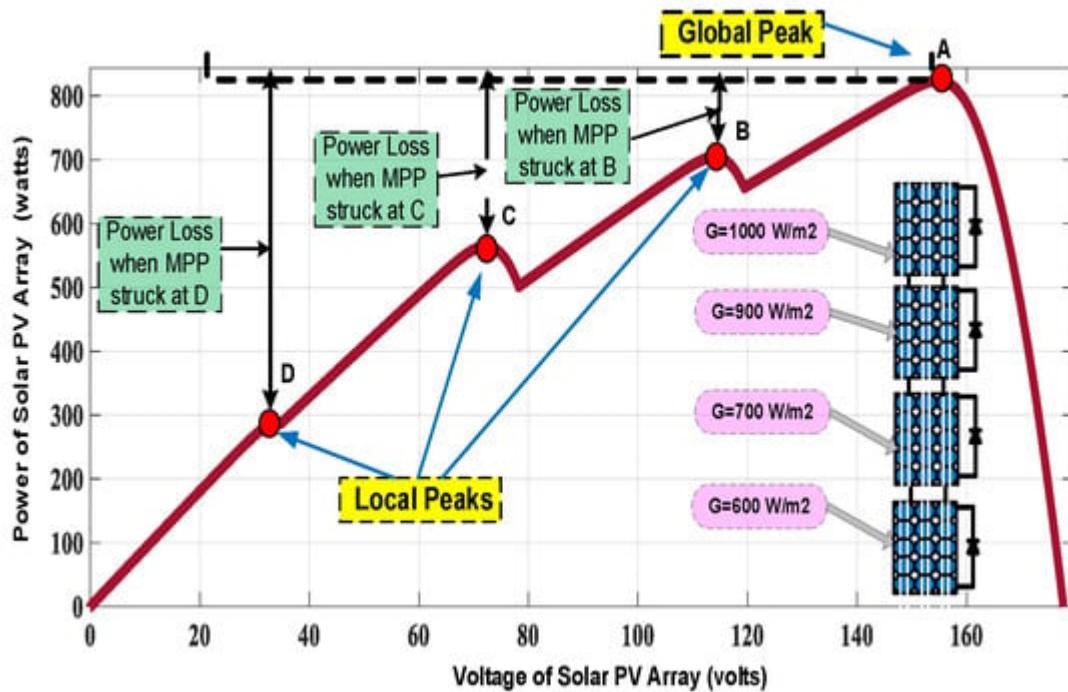


Figure 3. PV characteristics curve with PSC.

Figure 2 shows the two IV characteristic curves of a solar panel with partial shading of 1000 m/s^2 and 500 m/s^2 . The IV characteristic shows how the current flows through the solar panel as the voltage increases. The blue line represents the IV curve at an irradiance value of 1000 m/s^2 , whereas the red line presents the IV curve at an irradiance value of 500 m/s^2 . The current is proportional to the voltage, up to a point. Beyond that point, the current

starts to saturate and does not increase as much with increasing voltage. The saturation point is the point at which the solar panel produces the maximum amount of power, and the maximum power point is the point on the IV curve where the power is the greatest. The current output of the panel decreases as the level of shading increases, whereas the voltage output of the panel remains constant as the level of shading increases. Furthermore, the IV curve shifts to the right as the level of shading increases. This means that the panel requires a higher voltage to reach the same current output.

The breakdown voltage, also referred to as the reverse breakdown voltage, signifies the point at which a semiconductor device, such as a PV cell/module, experiences a sudden surge in current when reverse-biased. This phenomenon, often associated with 'avalanche breakdown' or 'Zener breakdown', emerges due to the intense electric field in the semiconductor depletion region, which results in the release of charge carriers through collision processes, leading to a rapid increase in current. Furthermore, bias voltage, encompassing both forward and reverse bias conditions, plays a pivotal role in the operation of PV cells/modules. When reverse bias is applied—by introducing a negative voltage to the cell's terminals—it can unintentionally occur due to factors such as shading or night-time operation. It is paramount to recognize that this reverse-bias operation can trigger unintended adverse effects, including potential damage to the cell/module due to excessive current during the breakdown phase.

Figure 3 shows the IV characteristic curve of a solar panel with partial shading. The current-voltage (IV) curve of a solar PV array provides valuable insights into its behavior under varying conditions, including partial shading. Under normal, unshaded conditions, the IV curve depicts a characteristic shape where the current increases linearly with voltage until it reaches a peak known as the maximum power point (MPP). However, under partial shading, this curve can exhibit unique characteristics due to non-uniform illumination across the array, which can be seen in **Figure 3**.

When partial shading occurs on a PV array, the IV curve can exhibit multiple local MPPs. These are points where a shaded portion of the array operates at its peak power output considering its specific current-voltage relationship. Each shaded section of the array will have its own local MPP, and the overall power generation can be limited to the lowest of these local MPPs. This limitation arises because the shaded sections act as resistors, causing voltage drops and reducing the current flow. As a result, the local MPPs represent the optimal operating points for each shaded area, whereas the global MPP represents the point on the IV curve where the entire array operates at its maximum power output. It considers the collective effect of all shaded and unshaded sections of the array. Achieving the global MPP is a challenge under partial shading, as the voltage and current variations due to shading can push the system away from this optimal point. Strategies such as bypass diodes, shading analysis, and advanced MPPT algorithms aim to guide the system towards the global MPP by dynamically adjusting the current-voltage characteristics of the array. The PV module power output also decreases directly with shading. However, shading has no impact on the PV module efficiency or fill factor ^[3]. The maximum power available at a unique knee point needs to be tracked under insulated conditions. Solar panels connected in a series receive different irradiance due to shading from the passing clouds. This leads to a hotspot formation problem, which may lead to failure of the PV panel because of the rise in temperature of the shaded panel. The bypass diodes can mitigate the

problem [4]. Bypass diodes are connected in parallel to each panel. The shaded panel is bypassed during shading, avoiding hotspot formation.

As a result, the MPPT becomes more difficult since conventional algorithms, including those focused on hill climbing, involve iteratively increasing or decreasing the input voltage or current until the MPP is reached. However, with nonlinear IV and PV characteristics, the MPP can be a local peak, and hill climbing algorithms can get stuck at this peak and not reach the global MPP. This can result in power losses.

Modifications to the panel array may be built to employ bypass diodes, module level power electronics, or microinverters to prevent these losses. Furthermore, there are a number of MPPT algorithms that have been developed to address the challenges of nonlinear IV and PV characteristics. These algorithms typically use more sophisticated techniques than hill climbing, such as genetic algorithms (GA), particle swarm optimization (PSO), and artificial neural networks (ANN). These algorithms are able to track the MPP more accurately and efficiently, which can lead to improved power output and reduced power losses.

There are several methods proposed for MPPT, which can be broadly classified into two categories: open-loop and closed-loop methods. Open-loop methods do not require any measurement of the PV module or array current or voltage, while closed-loop methods require the measurement of the PV module or array current and voltage. Open-loop methods are simple and easy to implement, but they are also affected by environmental conditions and the PV module or array characteristics. Closed-loop methods are more accurate and efficient, but they also require more complex hardware and control algorithms.

A comparison table contrasting open-loop and closed-loop methods for MPPT is shown in **Table 1**. This table highlights key differences between open-loop and closed-loop methods for MPPT, emphasizing aspects such as measurement requirements, implementation complexity, accuracy, efficiency, hardware, and adaptability. It provides a quick overview to help understand the pros and cons of each approach in the context of MPPT techniques.

Table 1. Comparison between open-loop and closed-loop methods for MPPT.

Aspect	Open-Loop Methods	Closed-Loop Methods
Measurement Requirement	No measurement of PV module/array current or voltage is needed.	Requires measurement of PV module/array current and voltage.
Simplicity of Implementation	Simple and easy to implement, suitable for basic setups.	More complex in implementation due to measurement and control requirements.
Environmental Impact	Susceptible to environmental conditions, leading to potentially reduced accuracy.	Less influenced by environmental factors, offering higher accuracy.
PV Module/Array Impact	Affected by PV module/array characteristics, which can lead to suboptimal performance.	More accurate adaptation to PV module/array characteristics, leading to better performance.

Aspect	Open-Loop Methods	Closed-Loop Methods
Efficiency	Typically less efficient due to limited adjustment accuracy.	Generally more efficient, as they can fine-tune adjustments.
Hardware Complexity	Requires simpler hardware compared to closed-loop methods.	Requires more complex hardware due to measurement and feedback components.
Control Algorithms	Simpler control algorithms are used for basic voltage or power adjustments.	More sophisticated control algorithms are needed for precise adjustments.
Adaptability	May struggle with dynamic changes or partial shading scenarios.	Better adaptability to changing conditions and shading scenarios.
Applications	Suited for smaller, cost-sensitive setups with minimal hardware requirements.	Ideal for larger installations or scenarios requiring higher accuracy and performance.

REFERENCES

- Andrei, H.; Dogaru-Ulieru, V.; Chicco, G.; Cepisca, C.; Spertino, F. Photovoltaic Applications. *J. Mater. Process. Technol.* 2007, 181, 267–273.
- Recently, several metaheuristic algorithms have been proposed for MPPT. Metaheuristic algorithms are optimization techniques inspired by natural processes, such as genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), ant colony optimization (ACO), and others. These algorithms have shown great potential in tracking the MPP under various operating conditions, including partial shading and non-uniform irradiance.
- Optimization Techniques for Maximum Power Point Tracking (MPPT) in Solar Photovoltaic Systems. *Renew. Sustain. Energy Rev.* 2016, 54, 1018–1034.
1. Andrei, H.; Dogaru-Ulieru, V.; Chicco, G.; Cepisca, C.; Spertino, F. Photovoltaic Applications. *J. Mater. Process. Technol.* 2007, 181, 267–273.
2. Salem, F.; Awadallah, M.A. Detection and Assessment of Partial Shading in Photovoltaic Arrays. *J. Electr. Syst. Inf. Technol.* 2016, 3, 23–32.
3. Salem, F.; Awadallah, M.A. Detection and Assessment of Partial Shading in Photovoltaic Arrays. *J. Electr. Syst. Inf. Technol.* 2016, 3, 23–32.
4. Vieira, R.G.; de Araújo, F.M.U.; Dhimish, M.; Guerra, M.L.S. A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules. *Energies* 2020, 13, 2472.
5. Elgendi, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm. *IEEE Trans. Sustain. Energy* 2013, 4, 108–117.
6. Elgendi, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications. *IEEE Trans. Sustain. Energy* 2012, 3, 21–33.
7. Buruambeth, R.; Ramabhadran, R. Fuzzy Logic Controller for Partial Shaded Photovoltaic Array Fed Modular Multilevel Converter. *IET Power Electron.* 2016, 9, 1694–1702.
8. Elbaid, L.M.; Abdelsalam, A.K.; Zakzouk, E.E. Artificial Neural Network-Based Photovoltaic Maximum Power Point Tracking Techniques: A Survey. *IET Renew. Power Gener.* 2015, 9, 1043–1063.
- The genetic algorithm (GA) is a search algorithm that is inspired by the processes of natural selection and evolution. GA can be used to find the global optimum of a function by simulating the processes of reproduction, mutation, and selection [12]. GA has been shown to be effective for MPPT, especially for PV systems with non-linear and complex characteristics [13]. Another popular metaheuristic algorithm for MPPT is particle swarm optimization (PSO). PSO is a search algorithm that is inspired by the behavior of a group of birds or fish searching for food. PSO can be used to find the global optimum of a function by simulating the processes of cooperation, competition,

10. El-Ghamra, J.; Al-Saadi, M.; El-Banai, M.; El-Qanji, B.; El-Nafaty, M. Comparative Analysis of Classical [15] and Meta-Heuristic MPPT Algorithms in PV Systems Under Uniform Condition. In Digital Technologies and Applications, Proceedings of the International Conference on Digital Technologies and Applications, Fez, Morocco, 27–28 January 2023; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2023; Volume 888, pp. 14–23.

11. Akyol, S.; Alatas, B. Plant Intelligence Based Metaheuristic Optimization Algorithms. *Artif. Intell. Rev.* 2017, 47, 417–462.

12. Chauhan, S.S.; Kumar, K.; Saini, A. A Review on Genetic Algorithm: Past, Present, and Future across diverse Tools. *Appl. Soft Comput.* 2020, 80, 8091–8126.

13. Hilali, A.; Mardoude, Y.; Essahaoui, A.; Rahali, A.; Ouanjli, N. El Migration to Solar Water Pump System: Environmental and Economic Benefits and Their Optimization Using Genetic Algorithm Based MPPT. *Energy Rep.* 2022, 8, 10144–10153.

14. Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. *Arch. Comput. Methods Eng.* 2022, 29, 2531–2561.

15. Li, H.; Yang, D.; Su, W.; Lu, J.; Yu, X. An Overall Distribution Particle Swarm Optimization MPPT Algorithm for Photovoltaic System under Partial Shading. *IEEE Trans. Ind. Electron.* 2019, 66, 265–275.

16. Liu, Y.H.; Huang, S.C.; Huang, J.W.; Liang, W.C. A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating under Partially Shaded Conditions. *IEEE Trans. Energy Convers.* 2012, 27, 1027–1035.

17. Verykios, V.E.; Alsaadi, F.A.; Alsaadi, F.A. A Comparative Analysis of Various Metaheuristic Algorithms for MPPT. *Comput. Electr. Eng.* 2014, 40, 100–114.

18. Chou, J.S.; Truong, D.N. A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean. *Appl. Math. Comput.* 2021, 389, 125535.

19. Zedran, H.; Saeed, H.; Berahman, M.; Hamed, A. A Comparative Analysis of MPPT Techniques for the Advantages of Different Lines of the Photovoltaic Power Plant Investment Decisions: A Case Study. *Sensors* 2021, 21, 4973.

20. Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. *Int. Ser. Oper. Res. Manag. Sci.* 2019, 272, 311–351.

21. Krishnan, G.; Sathesh, K.; Natinthal, S.; Simon, S.; Per, N.; Nayak, B.; Sarker, R. MPPT in PV Systems Using Metaheuristic Algorithms that have been used for MPPT, such as Cuckoo Search, Particle Swarm Optimization, Firefly Algorithm, Ant Colony Optimization with Dwindling Population, etc. *Renew. Power Gener.* 2020, 14, 1051112.

22. Huang, C.; Zhang, Z.; Wang, L.; Song, Z.; Long, H. A Novel Global Maximum Power Point Optimization (ESO) [36], etc. Furthermore, these hybrid metaheuristic algorithms have shown better performance in terms of convergence speed, accuracy, and robustness compared to their individual counterparts.

Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017.

23. Pervez, I.; Sarwar, A.; Tayyab, M.; Sarfraz, M. Gravitational Search Algorithm (GSA) Based Maximum Power Point Tracking in a Solar PV Based Generation System. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 22–23 March 2019.
24. Rezk, H.; Fathy, A. Simulation of Global MPPT Based on Teaching–Learning-Based Optimization Technique for Partially Shaded PV System. *Electr. Eng.* **2017**, *99*, 847–859.
25. Pervez, I.; Sarwar, A.; Pervez, A.; Tariq, M.; Zaid, M. Maximum Power Point Tracking of a Partially Shaded Solar PV Generation System Using Coyote Optimization Algorithm (COA). In *Advances in Electromechanical Technologies, Proceedings of the TEMT 2019, International Conference on Emerging Trends in Electro-Mechanical Technologies and Management*, New Delhi, India, 26–27 July 2019; *Lecture Notes in Networks and Systems*; Springer: Berlin/Heidelberg, Germany, 2020; pp. 509–518.
26. Pervez, I.; Sarwar, A.; Pervez, A.; Tariq, M.; Zaid, M. An Improved Maximum Power Point Tracking (MPPT) of a Partially Shaded Solar PV System Using PSO with Constriction Factor (PSO-CF). In *Advances in Electromechanical Technologies, Proceedings of the TEMT 2019, International Conference on Emerging Trends in Electro-Mechanical Technologies and Management*, New Delhi, India, 26–27 July 2019; *Lecture Notes in Networks and Systems*; Springer: Berlin/Heidelberg, Germany, 2020; pp. 499–507.
27. Lian, K.L.; Jhang, J.H.; Tian, I.S. A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined with Particle Swarm Optimization. *IEEE J. Photovolt.* **2014**, *4*, 626–633.
28. Seyedmahmoudian, M.; Soon, T.K.; Horan, B.; Ghandhari, A.; Mekhilef, S.; Stojcevski, A. New ARMO-Based MPPT Technique to Minimize Tracking Time and Fluctuation at Output of PV Systems under Rapidly Changing Shading Conditions. *IEEE Trans. Ind. Inform.* **2019**.
29. Badis, A.; Mansouri, M.N.; Sakly, A. PSO and GA-Based Maximum Power Point Tracking for Partially Shaded Photovoltaic Systems. In Proceedings of the 2016 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 22–24 March 2016.
30. Senthilkumar, S.; Mohan, V.; Deepa, R.; Nuthal Srinivasan, M.; Senthil Kumar, T.; Thanikanti, S.B.; Prathap, N. A Review on Mppt Algorithms for Solar Pv Systems. *Int. J. Res.-GRANTHAALAYAH* **2023**, *11*, 25–64.
31. Thangam, T.; Muthuvel, K. PFoPID CONTROL DESIGN OF GRID-CONNECTED PV INVERTER FOR MPPT USING HYBRID ALGORITHM. *Int. J. Power Energy Syst.* **2022**, *42*, 1–8.
32. Sharma, A.; Sharma, A.; Jately, V.; Averbukh, M.; Rajput, S.; Azzopardi, B. A Novel TSA-PSO Based Hybrid Algorithm for GMPP Tracking under Partial Shading Conditions. *Energies* **2022**, *15*,

3164.

33. Kumar, P.; Kumar, M.; Bansal, A.K. GMPP Tracking of Solar PV System Using Spotted Hyena and Quadratic Approximation Based Hybrid Algorithm under Partially Shaded Conditions. *IEEE Access* 2023.
34. Hafeez, M.A.; Naeem, A.; Akram, M.; Javed, M.Y.; Asghar, A.B.; Wang, Y. A Novel Hybrid MPPT Technique Based on Harris Hawk Optimization (HHO) and Perturb and Observer (P&O) under Partial and Complex Partial Shading Conditions. *Energies* 2022, 15, 5550.
35. Abo-Khalil, A.G.; El-Sharkawy, I.I.; Radwan, A.; Memon, S. Influence of a Hybrid MPPT Technique, SA-P&O, on PV System Performance under Partial Shading Conditions. *Energies* 2023, 16, 577.
36. Kumar, D.; Chauhan, Y.K.; Pandey, A.S.; Srivastava, A.K.; Kumar, V.; Alsaif, F.; Elavarasan, R.M.; Islam, M.R.; Kannadasan, R.; Alsharif, M.H. A Novel Hybrid MPPT Approach for Solar PV Systems Using Particle-Swarm-Optimization-Trained Machine Learning and Flying Squirrel Search Optimization. *Sustainability* 2023, 15, 5575.

Retrieved from <https://encyclopedia.pub/entry/history/show/113719>