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Machine learning is a type of deep learning. First in the machine learning (ML) process is the manual extraction of

relevant image characteristics. These characteristics are also used to classify the image according to its particular

characteristics. Researchers focused primarily on digital additive manufacturing, one of the most significant

emerging topics in Industry 4.0.

deep learning  additive manufacturing  image segmentation

1. Introduction

Rapid prototyping (RP) is a collection of manufacturing techniques that may produce a finished product straight

from a 3D model in a layer-by-layer fashion. Because of its numerous advantages, this technology has become a

crucial component of the fourth industrial revolution. Globally, technology is transforming the manufacturing

industry. Despite this, the industry’s adoption of this technology is hampered by layer-related flaws and poor

process reproducibility. The function and mechanical qualities of printed objects can be significantly impacted by

flaws such as lack of fusion, porosity, and undesirable dimensional deviation, which are frequent occurrences .

Variability in product quality, which poses a significant obstacle to its adoption in the production line, is one of the

process’s key downsides. To overcome this hurdle, inspecting and overseeing the additive manufacturing (AM)

process are essential. The importance of in-depth material and component analysis is growing, which leads this

technology toward the integration of data science and deep learning. These newly discovered data are invaluable

for acquiring a fresh understanding of AM processes and decision-making . Unlike traditional manufacturing

procedures, AM creates goods from digital 3D models layer-by-layer, line-by-line, or piece-by-piece . AM

fabrication methods have been developed to print natural working objects using diverse types and forms of

materials, including fused filament fabrication (FFF), stereolithography (SLA), selective laser sintering (SLS),

selective laser melting (SLM), and laser-engineered net shaping (LENS). The various techniques will be discussed

in the further section. The materials’ anisotropic character, porosity caused by inadequate material fusion, and

warping due to residual tension brought on by the fast-cooling nature of additive manufacturing techniques are only

a few of the particular difficulties that must be solved. Deep learning (DL) has recently gained popularity in pattern

recognition and computer vision due to its dominance in feature extraction and picture interpretation. Convolutional

neural networks (CNNs) are one of the most widely employed techniques in deep learning, and they have been

extensively used for object detection, action recognition, and image classification . CNN is widely used for
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computer vision task applications . DL integrated design is used for AM framework. In other words, deep learning

simulates the input and output data for the given part .

2. Deep Learning Models in Additive Manufacturing

In the additive manufacturing sector, parts quality inspection is essential and can be used to enhance products.

However, the manual recognition used in the conventional inspection procedure may be biased and low in

efficiency. As a result, deep learning has emerged as a reliable technique for quality inspection of the AM-built part.

The sector-wise representation of various deep learning models associated with AM to date is presented in Figure

1. The various model of DL associated with the AM has been discussed in this section elaborately.

Figure 1. Sector-wise representation of various deep learning models associated with AM.

2.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks are one of the deep neural network types that have received the most attention.

Because of the rapid development in the amount of annotated data and considerable advances in the capacity of

graphics processor units, convolutional neural network research has quickly developed and achieved state-of-the-

art outcomes on several applications . CNNs are made up of neurons that learn to optimize themselves, similar to

traditional ANNs . CNNs are frequently used in academic and commercial projects due to their benefits, such as

down sampling, weight sharing, and local connection. A CNN model typically requires four components to be built.
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Convolution is an essential step in feature extraction. Feature maps are the results of convolution. Researchers will

lose boundary information if researchers use a convolution kernel of a specific size . Padding is thus used to

increase the input with a zero value, which can modify the size indirectly. Furthermore, the stride is employed to

control the density of convolving. The density diminishes as the stride size increases. Feature maps generated

after convolution contain many features, which might cause overfitting. Pooling (also known as aggregation) avoids

redundancy . The basic architecture of CNN is presented in Figure 2. Table 1 provides a summary of various

literature on CNN. The deep CNN was accepted as the winning entry in the ImageNet Challenge 2012 (LSVRC-

2012), developed by Krizhevsky, Sutskever, and Hinton. Since then, DL has been successfully used for several use

cases, including, text processing, computer visions, sentiment analysis, recommendation systems, etc. Besides

that, big businesses like Google, Facebook, Amazon, IBM, and others have established their own DL research

facilities . In addition to that, AM has also incorporated it enormously. As shown in Figure 1.

Figure 2. Basic architecture of CNN.

Table 1. Summary of various literature on the related CNN.
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Type of
CNN AM Process Activation Loss Optimizer AccuracyReferences

CNN  
Leaky-Relu
and
SoftMax

Cross entropy Adam 99.3%

Alex
Net

Powder bed
fusion

SoftMax
and Relu

-
Momentum-based
Stochastic
Gradient Descent

97%

CNN
Direct energy
deposition

SoftMax
and Relu

Cross entropy Adam 80
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2.2. Recurrent Neural Networks (RNNs), GRU and LSTM

Recurrent neural networks (RNN) are built to handle sequential or time series data. Time series data can take the

form of text, audio, video, and so on. The architecture of the RNN unit demonstrates this. It uses the previous

step’s input as well as the current input. Tanh is the activation function here; alternative activation functions can be

used in place of tanh. RNNs have short-term memory issues. The vanishing gradient issue causes it. RNN will not

remember the long sequences of input . To address this issue, two customized variants of RNN were developed.

They are as follows: (1) GRU (gated recurrent unit) (2) LSTM (long-term memory). All the network is shown in

Figure 3.

Type of
CNN AM Process Activation Loss Optimizer AccuracyReferences

CNN
Selective laser
melting

SoftMax
and Relu

Cross entropy Gradient descent 99.4

CNN Metal AM
SoftMax
and Relu

Cross entropy Adam 92.1%

ResNet
50

FDM    98

CNN PBF
SoftMax
and Relu

   

CNN LASER PBF
ReLU and
sigmoid

Standard mean
squared error
and cross-
entropy

Adam 93.1

CNN
PBF (melt pool
classification)

Reply   9.84

CNN
Fused filament
fabrication

SoftMax
and Relu

  99.5

CNN
PBF (Melt pool,
plume and
splatter)

SoftMax
and Relu

 
Mini batch
gradient descent

92.7
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Figure 3. (a) Recurrent neural networks (RNNs),(b) GRU and (c) LSTM.

LSTMs and GRUs use memory cells to store the activation values of preceding words in extended sequences .

The concept of gates enters the picture now. Gates are used in networks to control the flow of information. Gates

can learn which inputs in a sequence are essential and retain their knowledge in the memory unit. They can

provide data in extended sequences and use it to generate predictions. The workflow of GRU is similar to that of

RNN. However, the distinction is in the operations performed within the GRU unit. Table 2 summarizes the various

literature on the sequences model.

Table 2. Summary of various literature on sequences model.

[26]

Model AM Procedure Problem Outcome References

RNN
+DNN

Laser-based

Laser scanning patterns and
the thermal history
distributions correlated, and
finding a relationship is
complex.

The created RNN-DNN model
can forecast thermal fields for
any geometry using various
scanning methodologies. The
agreement between the
numerical simulation results
and the RNN-DNN forecasts
was more significant than
95%.

RGNN
GNN

DED
Specific model generalizability
has remained a barrier across
a wide range of geometries.

Deep learning architecture
provides a feasible substitute
for costly computational
mechanics or experimental
techniques by successfully
forecasting long thermal
histories for unknown
geometries during the training
phase.
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Conv-
RNN

Inkjet AM
Height data from the input–
output relationship.

The model was empirically
validated and shown to
outperform a trained MLP with
significantly fewer data.

RNN,
GRU

DED

High-dimensional thermal
history in DED processes is
forecast with changes in
geometry such as build
dimensions, toolpath
approach, laser power, and
scan speed.

The model can predict the
temperature history of each
given point of the DED based
on a test-set database and
with minimum training.

LSTM DED

To determine the temperature
of the molten pool, analytical
and numerical methods have
been developed; however,
since the real-time melt pool
temperature distribution is not
taken into account, the
accuracy of these methods is
rather low.

Developed a machine
learning-based data-driven
predictive algorithm to
accurately estimate the melt
pool temperature during DED.

CNN,
LSTM

DED
Forecasting melt pool
temperature is layer-by-layer.

By combining CNN and LSTM
networks, geographical and
temporal information may be
retrieved from melt pool
temperature data.

CNN,
LSTM

SLS

Several factors determine the
energy consumption of AM
systems. These aspects
include traits with multiple
dimensions and structures,
making them difficult to
examine.

A data fusion strategy is
offered for estimating energy
consumption.

PyroNet,
IRNet,
LSTM

Laser-based
Additive
Manufacturing

Intends to advance
awareness of the fundamental
connection between the
LBAM method and porosity.

DL-based data fusion method
that takes advantage of the
measured melt pool’s thermal
history as well as two newly
built deep learning neural
networks to estimate porosity
in LBAM sections.

LSTM FDM

It is investigated how
equipment operating
conditions affect the quality of
the generated products using
standard data features from
the printer’s sensor signals
(vibration, current, etc.).

An intelligent monitoring
system has been designed in
terms of working conditions
and product quality.
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2.3. Generative Adversarial Networks (GANs) and Autoencoder

The GAN has recently gained popularity in the fields of computer science and manufacturing, ranking among the

most widely used deep learning approaches. The GANs are used in computer vision applications in many areas

such as medical, and industrial automation. The generating network and the discriminative network are the two

networks that make up a GAN . The generator generates the fake image and the decimator differentiates the

fake image from the original image. First, using a generator, researchers create a fake image out of a batch of

random vectors drawn from a Gaussian distribution. The generated image does not mirror the real input distribution

because the generator has not been educated. Researchers feed the discriminator batches of actual and created

fake images from the input distribution so that it can learn to distinguish between the two types of images. An

image-enhancement generative adversarial network (IEGAN) is created, and the training procedure uses a new

objective function. The thermal images obtained from an AM method are used for image segmentation to confirm

the superiority and viability of the proposed IEGAN. Results of experiments show that the created IEGAN works

better than the original GAN in raising the contrast ratio of thermal images . Figure 4 depicts the GAN and

autoencoder overview.

Figure 4. (a) Generative adversarial networks (GANs) and (b) Autoencoder.

An autoencoder is used for unsupervised learning data encodings. An autoencoder trains the network to identify

the key elements of the input image to learn a lower-dimensional representation (encoding) for higher-dimensional

data, generally for dimensionality reduction. Ironically, the bottleneck is the most crucial component of the neural

network. The autoencoder is widely applied in noise reductions in the image. The auto-encode takes X as input

and tries to generate X as output . Table 3 summarizes the various literature on GAN and autoencoders.

Table 3. Summary of various literature on GAN and autoencoders.

LSTM PBF

During the printing process to
avoid an uneven and harsh
temperature distribution
across the printing plate

Anticipate temperature
gradient distributions during
the printing process

[36]
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RNN
+DNN

Laser-based

Laser scanning patterns and
the thermal history
distributions correlated, and
finding a relationship is
complex.

The created RNN-DNN model
can forecast thermal fields for
any geometry using various
scanning methodologies. The
agreement between the
numerical simulation results
and the RNN-DNN forecasts
was more significant than
95%.

RGNN
GNN

DED
Specific model generalizability
has remained a barrier across
a wide range of geometries.

Deep learning architecture
provides a feasible substitute
for costly computational
mechanics or experimental
techniques by successfully
forecasting long thermal
histories for unknown
geometries during the training
phase.

Conv-
RNN

Inkjet AM
Height data from the input–
output relationship.

The model was empirically
validated and shown to
outperform a trained MLP with
significantly fewer data.

RNN,
GRU

DED

High-dimensional thermal
history in DED processes is
forecast with changes in
geometry such as build
dimensions, toolpath
approach, laser power, and
scan speed.

The model can predict the
temperature history of each
given point of the DED based
on a test-set database and
with minimum training.

LSTM DED

To determine the temperature
of the molten pool, analytical
and numerical methods have
been developed; however,
since the real-time melt pool
temperature distribution is not
taken into account, the
accuracy of these methods is
rather low.

Developed a machine
learning-based data-driven
predictive algorithm to
accurately estimate the melt
pool temperature during DED.

CNN,
LSTM

DED
Forecasting melt pool
temperature is layer-by-layer.

By combining CNN and LSTM
networks, geographical and
temporal information may be
retrieved from melt pool
temperature data.

CNN,
LSTM

SLS Several factors determine the
energy consumption of AM
systems. These aspects

A data fusion strategy is
offered for estimating energy
consumption.

[27]

[28]

[29]

[30]

[31]

[32]

[33]



Deep Learning towards Digital Additive Manufacturing | Encyclopedia.pub

https://encyclopedia.pub/entry/38938 9/15

2.4. Restricted Boltzmann Machines (RBMs) and Deep Belief Networks (DBNs)

Geoffrey Hinton also developed RBMs, which have a wide range of applications including feature engineering,

collaborative filtering, computer vision, and topic modeling . RBMs, as their name suggests, are a minor

variation of Boltzmann machines. They are simpler to design and more effective to train than Boltzmann machines

since their neurons must form a bipartite network, which means there are no connections between nodes within a

group (visible and hidden). Particularly, this connection constraint enables RBMs to adopt training methods that are

more effective and sophisticated than those available to BM, such as the gradient-based contrastive divergence

algorithm.

A strong generative model known as a deep belief network (DBN) makes use of a deep architecture made up of

numerous stacks of restricted Boltzmann machines (RBM). Each RBM model transforms its input vectors

nonlinearly (similar to how a standard neural network functions) and generates output vectors that are used as

inputs by the subsequent RBM model in the sequence. DBNs now have a lot of flexibility, which also makes them

simpler to grow. DBNs can be employed in supervised or unsupervised contexts using a generative model. In

numerous applications, DBNs may perform feature learning, extraction, and classification . Table 4 summarizes

various literature on DBNs.

Table 4. Summary of various literature on DBN.

include traits with multiple
dimensions and structures,
making them difficult to
examine.

PyroNet,
IRNet,
LSTM

Laser-based
Additive
Manufacturing

Intends to advance
awareness of the fundamental
connection between the
LBAM method and porosity.

DL-based data fusion method
that takes advantage of the
measured melt pool’s thermal
history as well as two newly
built deep learning neural
networks to estimate porosity
in LBAM sections.

LSTM FDM

It is investigated how
equipment operating
conditions affect the quality of
the generated products using
standard data features from
the printer’s sensor signals
(vibration, current, etc.).

An intelligent monitoring
system has been designed in
terms of working conditions
and product quality.

LSTM PBF

During the printing process to
avoid an uneven and harsh
temperature distribution
across the printing plate

Anticipate temperature
gradient distributions during
the printing process

[34]

[35]

[36]

[40]

[41]

Model AM Problem Solution Ref

DBN SLM

Due to the addition of several
phases during defect identification
using conventional classification
algorithms, the system becomes
fairly complex.

The DBN technique might achieve a high defect
identification rate among five melted states without
signal preprocessing. It is implemented without
feature extraction and signal preprocessing using a
streamlined classification structure.

[42]



Deep Learning towards Digital Additive Manufacturing | Encyclopedia.pub

https://encyclopedia.pub/entry/38938 10/15

2.5. Other Deep-Learning Networks

In addition to the above-described deep learning model, there are a few more DL algorithms that have been used,

such as radial basis function networks (RBFNs), self-organizing maps (SOMs), multilayer perceptrons (MLPs), etc.

However, a significantly less prominent use case was present while doing a literature survey on these models.

Much work has been done using MLP, but it has some limitations over CNN. Object detections and segmentations

are used in defect detections in AM.

Li et al. used the YOLO object detection deep learning model for defect detection in adaptive manufacturing. It

enables rapid and precise flaw identification for wire and arc additive manufacturing (WAAM). Yolo algorithm

performances are compared with a traditional object detections algorithm. It shows that it can be used in real-world

industrial applications and has the potential to be used as a vision-based approach in defect identification systems

.

Chen et al. discuss how researchers improve classifying the product quality in AM by using the YOLO algorithm.

The outcome shows that 70% of product quality is classified in Realtime video. The YOLO algorithm performances

are compared with different version from version 2 to version 5 and the YOLO algorithm reduces the labor cost .

Wang et al. developed center net-based defect detection for AM. The center net uses object size, a heatmap, and a

density map for defect detection. The suggested model, Center Net-CL, outperforms traditional object detection

models, such as one-stage, two-stage, and anchor-free models, in terms of detection performance. Although this

strategy worked effectively, it is only applicable in certain sectors .

The semantic segmentation framework for additive manufacturing can improve the visual analysis of production

processes and allow the detection of specific manufacturing problems. The semantic segmentation work will

enable the localization of 3D printed components in picture frames that were collected and the application of image

processing techniques to its structural elements for further tracking of manufacturing errors. The use of image style

transfer is highly valuable for future study in the area of converting synthetic renderings to actual photographs of

3D printed objects .

Wong et al. reported the challenges of segmentations in AM. The image size is very small and the appearance of

defect variations is also very small, so it is very difficult to detect defects in AM. Three-dimensional CNN achieved

good performances in volumetric images. A 3D U-Net model was used to detect errors automatically using

computed tomography (XCT) pictures of AM specimens .

Wang et al. presented anunsupervised deep learning algorithm for defect segmentations in AM. The unsupervised

models extract local features as well as global features in the image for improving the defect segmentations in AM.

A self-attention model performs better than the without-self-attention model for defect detection in AM .

Model AM Problem Solution Ref

DBN SLM  Melted state recognition during the SLM process. [43]

[44]

[45]
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[47]

[48]

[49]
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Job scheduling is the biggest problem in AM. The order in which the job is scheduled is to be decided for the better

performance of AM. Deep reinforcement learning can be applied to decide the job orders. Traditional approaches

need a lot of time since they can only find the best answer at a particular moment and must start again if the state

changes. Deep reinforcement learning (DRL) is employed to handle the problem of job scheduling AM. The DRL

approach uses proximal policy optimization (PPO) to identify the best scheduling strategy to address the state’s

dimension disaster .

Abualkishik et al. discussed how natural language processing can be applied to customer satisfaction and improve

the process of the AM. Graph pooling and the learning parameter can be applied as proof of customer satisfaction

.
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