

Vectors and Hosts of *Rickettsia felis* in Europe

Subjects: **Veterinary Sciences**

Contributor: Constantina N. Tsokana , Ioanna Kapna , George Valiakos

Rickettsia felis is an obligate intracellular Gram negative bacterium and the causative agent of flea-borne spotted fever (FBSF). *Rickettsia felis* requires a vertebrate and invertebrate host to survive and reproduce. The cat flea (*Ctenocephalides felis*) is considered as the primary vector and the reservoir host of this pathogen.

Rickettsia felis

rickettsiosis

zoonosis

1. Introduction

Rickettsia felis requires a vertebrate and invertebrate host to survive and reproduce. The cat flea (*Ctenocephalides felis*) is considered as the primary vector and the reservoir host of this pathogen [1][2]. *Rickettsia felis* has been also identified in various flea species and there is a growing evidence of detection in other arthropods: ticks, mites, lice and mosquitoes. Similarly, the host range of *R. felis* is increasing; reports on infected humans, domestic and wild animals are coming from all over the world. However, the competency of the different arthropods and hosts as vectors and reservoirs, respectively, is yet to be demonstrated [2].

Rickettsia felis follows the distribution of its vector; it occurs on all continents except Antarctica [3]. The first human case was reported in Texas in 1994 [4] and the first autochthonous human case was reported in Europe in 2002 [5], suggesting that this pathogen was not restricted to USA and it had the potential for global distribution. The lack of specific diagnostics and the similarity of FBSF with the disease caused by *R. typhi* [Flea-borne (murine) typhus] or with other vector-borne diseases, potentially leads to the under-diagnosis of the disease caused by *R. felis*. Thus, the true number of *R. felis* cases may be under-estimated. Under-reporting may also be enhanced by the self-limiting nature of the disease [2].

Although originally considered a sporadic disease, febrile illness has recently been regularly associated with *R. felis* in sub-Saharan Africa; the monthly incidence of *R. felis* infection in humans was found to reach approximately 17% during spring [6][7]. The recent identification of *R. felis* in the literature, and the increasing number of human cases from different regions in parallel to the fast-growing reports of the worldwide detection of *R. felis* in different arthropod and host species, justify its designation as an emerging pathogen [2][8][9].

2. Vectors and Hosts of *R. felis* in Europe

2.1. Vectors

During 2017–2022, a total of 11 European countries reported the occurrence of *R. felis* in several vector species (**Figure 1**). The vectors found to be infected included flea, tick and mite species; the dominant flea and tick species were *C. felis* and *I. ricinus*, respectively. The baseline characteristics of the studies on vectors which were included in **Table 1**.

Figure 1. Map showing the European countries (in green) that reported the occurrence of *R. felis* during 2017–2022 in hosts and vectors (<https://www.mapchart.net/europe.html>, accessed on 12 November 2022).

Table 1. The reported occurrence of *R. felis* in different vectors in Europe (2017–2022).

Countries	Study Period	Vectors	Prevalence in Vector	Vector Hosts	Reference
Austria	2016	<i>C. felis</i>	Not defined (1/105)	Cats	[10]
France	2014–2017	<i>I. ricinus</i>	0.1% (1/998)	Environment	[11]

Countries	Study Period	Vectors	Prevalence in Vector	Vector Hosts	Reference
France	2017	<i>I. ricinus</i>	7% **	Environment	[12]
Greece	2013	<i>C. felis</i>	13% (3/23)	Cats	[13]
Greece	2016–2017	<i>C. felis, C. canis, P. irritans</i>	14% (14/100) *	Dogs and Cats	[14]
Italy	2013	<i>Rh. turanicus</i>	2.9% (1/34) *	Sheep	[15]
Italy	2014–2016	<i>I. hexagonus</i>	Not defined	Hedgehog and fox	[16]
Lithuania	2013–2014	<i>H. microti, L. agilis, Ct. agyrtes, H. talpae</i>	Not defined	Rodents	[17]
Malta	2017	<i>C. felis</i>	39.47% (15/38)	Cats	[18]
Malta	2017	<i>C. felis</i>	96.42% (54/56) *	Cats	[19]
Romania	2018	<i>I. ricinus</i>	Not defined (1/222)	Rodents, birds, hedgehogs	[20]
Serbia	2019	<i>I. ricinus</i>	3% (1/31)	Humans	[21]
Serbia	2020	Ticks	4.3%	Humans	[22]
Slovakia	2012–2014	<i>N. fasciatus, Ct. assimilis</i>	Not defined	Rodents	[23]
Slovakia	2014–2016	<i>Ct. solutus</i>	Not defined	Small mammals (<i>A. agrarius</i>)	[24]
	2011–2018	<i>C. felis</i>	28.3% (15/53)	Dogs	[25]
Spain		<i>A. erinacei</i>	33.3% (6/18)	Hedgehogs	
		<i>Ct. b. boissevauorum</i>	1.6% (1/60)	Rodents (<i>A. terrestris</i>)	
Spain	2015–2017	<i>I. ricinus</i>	0.46% (1/219)	Environment	[26]
Spain	2019–2020	<i>C. felis</i>	29.6% (38/128)	Dogs and Cats	[27]
UK	2018	<i>C. felis, C. canis</i>	5.7% (27/470) *	Dogs and Cats	[28]

1. Azad, A.F.; Sacci, J.B.; Nelson, W.M.; Dasch, G.A.; Schmidtmann, E.T.; Carl, M. Genetic Characterization and Transovarial Transmission of a Typhus-like Rickettsia Found in Cat Fleas. Proc. Natl. Acad. Sci. USA 1992, 89, 43–46.

2. Yazid Abdad, M.; Stenos, J.* ~~Graves, S.~~ *Rickettsia felis*, an Emerging Flea-Transmitted Human Pathogen. *Emerg. Health Threat. J.* 2011, 4, 7168.

2.2. Hosts

3. Brown, L.D.; Macaluso, K.R. *Rickettsia felis*, an Emerging Flea-Borne Rickettsiosis. *Curr. Trop. Med. Rep.* 2016, 3, 27–39. During 2017–2022, a total of nine European countries reported the occurrence of *R. felis* in different hosts (Figure 14). The hosts found to be infected by *R. felis* by molecular methods or exposed to *R. felis* by serology were humans, cats and small mammals. The baseline characteristics of the studies on hosts which were included in *Rickettsia infection in a Patient Diagnosed with Murine Typhus*. *J. Clin. Microbiol.* 1994, 32, 949–954:

5. Richter, J. *Rickettsia felis* Infection Acquired in Europe and Documented by Polymerase Chain Reaction. *Emerg. Infect. Dis.* 2002, 8, 207–208.

Countries	Study Period	Host	Prevalence in Host	Reference
Germany	2008	Human	2.7% (15/559) *	[29]
Germany	2010–2014	Wild mammals (<i>A. amphibius</i> , <i>A. flavicollis</i> , <i>A. sylvaticus</i>)	Not defined	[30]
Germany	2012–2014	Small mammals (<i>A. flavicollis</i>)	Not defined	[31]
Greece	2013	Human	3.5% (8/223) *	[13]
Italy	2010–2016	Cats	8.04% (23/286) *	[32]
Italy	2018–2021	Cats	17.89% (17/95) *	[33]
Malta	2017	Cats	0%	[19]
Poland	2014	Small mammals (<i>A. flavicollis</i>)	Not defined	[34]
Serbia	2019	Human	3% (1/30)	[21]
Serbia	2020	Human	Not defined (1/85)	[22]
Slovakia	2014–2015	Small mammals (<i>A. flavicollis</i>)	1.1% (3/27)	[35]
Sweden	2015	Human	Not defined *	[36]
Turkey	2017–2021	Cats	26.3% (44/167)	[37]

13. Chochlakis, D.; Germanakis, A.; Chaliotis, G.; Kapetanaki, S.; Kalogeraki, L.; Gkika, E.; Partalis, N.; Polymili, G.; Tsalentis, Y.; Psaroulaki, A. Potential Exposure of Humans to *Rickettsia felis* in Greece. *Acta Tropica* 2018, 178, 40–45.

14. Dougas, G.; Tsakris, A.; Billinis, C.; Beleri, S.; Patsoula, E.; Papaparaskevas, J. Molecular European countries reported the detection of *R. felis* in several arthropod and host species: fleas, ticks and mites, and cats, small mammals and humans, respectively. Several studies provided the first evidence of *R. felis* detection in some countries, vectors or animal species, such as in *Ct. agyrtes* and *H. talpae* fleas and *H. microti*

15. Rae, J.D.; Antunes, M.; Della Pergola, M.; Gatti, M.; Salant, H.; Suter, V.; Salama, M.; Caffero, M.; Spotted Fever in Spain [25], *Rh. turata* and *Rickettsia* Associated with Wild Ticks and Wild Environment in Southern Italy and Northern Spain [26]. *Microbes Infect.* 2018, 20, 185–192. were removed from different hosts: cats, dogs, hedgehogs, foxes, sheep, rodents, birds, small mammals (*A. agrarius*, *A. agrarius*) and humans, as well as from the environment (flagging) [14].

16. Pascucci, I.; Di Domènico, M.; Curini, V.; Cocco, A.; Averaimo, D.; D'Alterio, N.; Cammà, C.

Diversity of *Rickettsia* in Ticks Collected in Abruzzi and Molise Regions (Central Italy). Among the flea species examined, *C. felis*, *C. canis*, *P. irritans*, *Ct. agyrtes*, *H. talpae*, *Ct. solitus*, *N. fasciatus*, *Ct. assimilis*, *A. erinacei* and *Ct. b. boissevauorum* were found to be infected with *R. felis*—with some of them being the

17. Ravizi, J.; Jevons, J.; Kaminskienė, E.; Elpatova, I.; Mardzaite, R.; Sutkienė, D.; Babėnko, D. *ib. previous study*; Stanković, M.; Paudel, S. *ib. A Review of the Prevalence and Diversity of Rickettsia Species in Ectoparasites, Tunga persica Collected from Small Rodents in the Human Parasites Nematoda* 2018, 11, 375. [38] [39].

18. Hornok, S.; Baneth, G.; Grima, A.; Takács, N.; Konthchán, J.; Meli, M.L.; Suter, V.; Salant, H.; Although numerous flea species have been found to be infected by *R. felis*, the cat flea is deemed as the primary Farkas, R.; Hofmann-Lehmann, R. Molecular Investigations of Cat Fleas (Ctenocephalides Felis) vector of *R. felis*. Furthermore, the pathogen has been identified in the mid-gut, ovaries and salivary glands of *C. felis*. Provide the First Evidence of *Rickettsia felis* in Malta and *Candidatus Rickettsia senegalensis* in Israel. *New Microbes New Infect.* 2018, 25, 3–6.

19. Mihalca, A.D.; Takács, N.; Grima, A.; Farkas, R. Detection of Flea-Borne

Pathogens from Cats and Fleas in a Maltese Shelter. *Vector Borne Zoonotic Dis.* 2020, 20, 529– Several host species, including cats, dogs, opossums, raccoons, rodents, and humans, were either seropositive or

20. Borșan, S.-D.; Ioniță, A.M.; Galon, C.; Toma-Naic, A.; Pestean, C.; Sándor, A.D.; Moutailler, S.; has not been identified [38] [43]. The vertebrate hosts which were found to be *R. felis* infected or exposed during Mihalca, A.D. High Diversity, Prevalence, and Co-Infection Rates of Tick-Borne Pathogens in investigations in the last five years in Europe are cats (0–26.3%) [32] [33] [37], small mammals (1.1%) [35] and humans Ticks and Wildlife Hosts in an Urban Area in Romania. *Front. Microbiol.* 2021, 12, 645002. (2.7–3.5%) [13] [21]. Free-roaming animals as well as the wild animals are of increased importance as they do not

21. Banović, P.; Díaz-Sánchez, A.A.; Simin, V.; Foucault-Simonin, A.; Galon, C.; Wu-Chuang, A.; *Rickettsia felis* is an emerging arthropod-borne pathogen which has been detected in a wide range of vectors and Mijatović, D.; Obregón, D.; Moutailler, S.; Cabezas-Cruz, A. Clinical Aspects and Detection of hosts worldwide. However, the role of the multiple arthropods that harbor the pathogen is still unclear; extensive Emerging Rickettsial Pathogens: A “One Health” Approach Study in Serbia, 2020. *Front. field research, including of hosts and vectors close to the residences of *R. felis* human cases, would provide an Microbiol.* 2022, 12, 797399.

22. Banović, P.; Díaz-Sánchez, A.A.; Simin, V.; Foucault-Simonin, A.; Galon, C.; Wu-Chuang, A.; insight into the components involved in the transmission chain. Clinicians should be aware of the epidemiology of

23. Špitálská, E.; Mihalca, A.; Lan, H.; Kováč, Z.; Štefánková, M.; Krajíčová, M.; Balon, J.; *Rickettsia* but the pre-Babesia and Hepatozoon Species in Fleas (Siphonaptera) Infesting Small Mammals of Slovakia

24. Heglasová, I.; Vichová, B.; Stanko, M. Detection of *Rickettsia* spp. in Fleas Collected from Small Mammals in Slovakia, Central Europe. *Vector Borne Zoonotic Dis.* 2020, 20, 652–656.

25. Zurita, A.; Benkacimi, L.; El Karkouri, K.; Cutillas, C.; Parola, P.; Laroche, M. New Records of Bacteria in Different Species of Fleas from France and Spain. *Comp. Immunol. Microbiol. Infect. Dis.* 2021, 76, 101648.

26. Remesar, S.; Díaz, P.; Portillo, A.; Santibáñez, S.; Prieto, A.; Díaz-Cao, J.M.; López, C.M.; Panadero, R.; Fernández, G.; Díez-Baños, P.; et al. Prevalence and Molecular Characterization of *Rickettsia* spp. in Questing Ticks from North-Western Spain. *Exp. Appl. Acarol.* 2019, 79, 267–278.

27. Abreu-Yanes, E.; Abreu-Acosta, N.; Kosoy, M.; Foronda, P. Molecular Detection of *Bartonella henselae*, *Bartonella clarridgeiae* and *Rickettsia felis* in Cat and Dog Fleas in Tenerife, Canary Islands, Spain. *J. Vector Ecol.* 2020, 45, 233–240.

28. Abdullah, S.; Lait, P.; Helps, C.; Newbury, H.; Wall, R. The Prevalence of *Rickettsia felis* DNA in Fleas Collected from Cats and Dogs in the UK. *Vet. Parasitol.* 2020, 282, 109143.

29. Wölfel, S.; Speck, S.; Essbauer, S.; Thoma, B.R.; Mertens, M.; Werdermann, S.; Niederstrasser, O.; Petri, E.; Ulrich, R.G.; Wölfel, R.; et al. High Seroprevalence for Indigenous Spotted Fever Group Rickettsiae in Forestry Workers from the Federal State of Brandenburg, Eastern Germany. *Ticks Tick Borne Dis.* 2017, 8, 132–138.

30. Fischer, S.; Spierling, N.G.; Heuser, E.; Kling, C.; Schmidt, S.; Rosenfeld, U.M.; Reil, D.; Imholt, C.; Jacob, J.; Ulrich, R.G.; et al. High Prevalence of *Rickettsia helvetica* in Wild Small Mammal Populations in Germany. *Ticks Tick Borne Dis.* 2018, 9, 500–505.

31. Obiegala, A.; Król, N.; Oltersdorf, C.; Nader, J.; Pfeffer, M. The Enzootic Life-Cycle of *Borrelia burgdorferi* (Sensu Lato) and Tick-Borne Rickettsiae: An Epidemiological Study on Wild-Living Small Mammals and Their Ticks from Saxony, Germany. *Parasites Vectors* 2017, 10, 115.

32. Morganti, G.; Veronesi, F.; Stefanetti, V.; Di Muccio, T.; Fiorentino, E.; Diaferia, M.; Santoro, A.; Passamonti, F.; Gramiccia, M. Emerging Feline Vector-Borne Pathogens in Italy. *Parasites Vectors* 2019, 12, 193.

33. Ebani, V.V.; Nardoni, S.; Maestrini, M.; Perrucci, S.; Mancianti, F. Serological Survey on the Occurrence of *Rickettsia* spp., *Neospora caninum*, *Bartonella henselae* and *Toxoplasma gondii* in Cats from Tuscany (Central Italy). *Animals* 2021, 11, 1842.

34. Gajda, E.; Hildebrand, J.; Sprong, H.; Buńkowska-Gawlik, K.; Perec-Matysiak, A.; Cojan, E.C. Spotted Fever Rickettsiae in Wild-Living Rodents from South-Western Poland. *Parasites Vectors* 2017, 10, 413.

35. Heglasová, I.; Víchová, B.; Kraljík, J.; Mošanský, L.; Miklisová, D.; Stanko, M. Molecular Evidence and Diversity of the Spotted-Fever Group *Rickettsia* spp. in Small Mammals from Natural, Suburban and Urban Areas of Eastern Slovakia. *Ticks Tick Borne Dis.* 2018, 9, 1400–1406.

36. Wallménus, K.; Pahlson, C.; Nilsson, K. Retrospective Serological Study of *Rickettsia* spp. and *Borrelia* spp. Antibodies in Patients with Peripheral Facial Nerve Palsy. *Infect. Ecol. Epidemiol.* 2021, 11, 1987058.

37. Muz, M.N.; Erat, S.; Mumcuoglu, K.Y. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. *Pathogens* 2021, 10, 1114.
38. Pérez-Osorio, C.E.; Zavala-Velázquez, J.E.; León, J.J.A.; Zavala-Castro, J.E. *Rickettsia felis* as Emergent Global Threat for Humans. *Emerg. Infect. Dis.* 2008, 14, 1019–1023.
39. Reif, K.E.; Macaluso, K.R. Ecology of *Rickettsia felis*: A Review. *J. Med. Entomol.* 2009, 46, 723–736.
40. Macaluso, K.R.; Pornwiroon, W.; Popov, V.L.; Foil, L.D. Identification of *Rickettsia felis* in the Salivary Glands of Cat Fleas. *Vector-Borne Zoonotic Dis.* 2008, 8, 391–396.
41. Higgins, J.A.; Sacci, J.B.; Schriefer, M.E.; Endris, R.G.; Azad, A.F. Molecular Identification of *Rickettsia*-like Microorganisms Associated with Colonized Cat Fleas (*Ctenocephalides felis*). *Insect Mol. Biol.* 1994, 3, 27–33.
42. Wedincamp, J.; Foil, L.D. Vertical Transmission of *Rickettsia felis* in the Cat Flea (*Ctenocephalides felis* Bouché). *J. Vector Ecol.* 2002, 27, 96–101.
43. Reif, K.E.; Stout, R.W.; Henry, G.C.; Foil, L.D.; Macaluso, K.R. Prevalence and Infection Load Dynamics of *Rickettsia felis* in Actively Feeding Cat Fleas. *PLoS ONE* 2008, 3, e2805.
44. Nelson, K.; Maina, A.N.; Brisco, A.; Foo, C.; Croker, C.; Ngo, V.; Civen, R.; Richards, A.L.; Fujioka, K.; Wekesa, J.W. A 2015 Outbreak of Flea-Borne Rickettsiosis in San Gabriel Valley, Los Angeles County, California. *PLoS Negl. Trop. Dis.* 2018, 12, e0006385.

Retrieved from <https://encyclopedia.pub/entry/history/show/93610>