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The intake of fruit has a notable effect on the prevention of signs of aging, cardiovascular diseases, cataracts, and

strokes, presenting anti-inflammatory, anticancer, antidiabetic, and neuroprotective properties. In addition, fruit juices are

considered alternative food products, being developed as probiotic substrates as an alternative to dairy products.

Because they are well accepted by consumers and have a high nutritional value with positive health effects, fruit juices

are ideal vehicles for probiotics.
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1. The Chemical Composition of Fruit

It is recognized that fruit consumption constitutes a large contribution of macronutrients, micronutrients, phytochemicals,

and structural carbohydrates  (Figure 1), resulting in health benefits. According to dietary guidelines, fruit intake

decreases excessive oxidative stress, preventing chronic and metabolic diseases while also acting on energy intake .

Figure 1. Fruit composition.

Indeed, fruits are recognized as fundamental sources of vitamins, minerals, dietary fiber, and antioxidants. Their nutritional

value and sensory characteristics depend on species, variety, cultivation (conventional or biological), soil, climatic

conditions, storage, transport, and shelf life. Currently, there is a tendency to combine different fruits to increase both the

flavor and the contribution of nutritional qualities .

Fruits are important sources of vitamins and minerals, mainly vitamin C and the B complex, and precursors of vitamin A,

as well as providing antioxidants .

Minerals are essential in human health as they affect the development of bones and teeth, in addition to being related to

electrolyte and water balance, metabolic catalysts, oxygen binding, and hormonal functions . Fruits can contain

significant amounts of important minerals such as: potassium, particularly bananas, blackcurrants, and blackberries;

magnesium, of which the highest content is recorded in blackberries; and iron, where the strawberry stands out. However,

they are low in sodium and selenium. It is also observed that berries as a whole are an important source of minerals, of

which the main minerals found are phosphorus, potassium, calcium, magnesium, and iron (Table 1).

Table 1. Mineral and vitamin composition of different fresh fruits.
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Fruits Minerals (mg/100 g of Fresh Weight) Vitamins Referenc

 Ca P K Mg Na Fe Se Cu Mn Zn C A B6 B2  

Apple 6 11 107 5 1 120 0 30 40 40 4.6 3 - -

Apricot 13 23 259 10 1 390 0.1 80 80 200 10 96 - -

Banana 5 22 358 27 1 260 1 80 270 150 8.7 3 - -

Blackberry
6–

29
2–29 77–

349

6–

44.8
2–4 

0.28–

1.28
-

0.02–

0.04
1.2–

2.6 

0.07–

0.44
34–52 - - -

Blackcurrant
35–

45 

35–

40 

300–

320 

15–

18 

1.7–

2.5 

1.3–

2.5 
-

0.15–

0.20

0.35–

0.52

0.25–

0.31
122.4–

193.2
- - -

Blueberry
15–

35 
8.6

56–

80 
4.9

0.11–

0.22 1.24 -

0.02–

0.04

d

- 0.13
10–

100
- 1999 216 

Cherry 13
12.2–

15

90.9–

173

11–

12.2
0 1.16 0 60 - 0.69

10–

62.4
3 790 247 

Clementine 30 21 177 10 1 140 10 40 20 60 48.8 - - -

Cranberry
15–

30 
1–4 

24–

30 
3–7 4–6 

0.16–

0.4  
0.13–

0.2 

0.3–

0.10

0.02–

0.04 10 - 606 69 

Fig 35 14 14 17 1 370 0.2 70 130 150 2 7 - -

Grapes 10 20 191 7 2 360 0.1 130 70 70 3.2 3 - -

Litchis 5 31 171 10 1 310 0.6 150 60 70 71.5 0 - -

Mango 11 14 168 10 1 160 0.6 110 60 90 36.4 54 0.1–

0.16

0.02–

0.1

Melon 9 15 267 12 16 210 0.4 40 - 180 36.7 169 - -

Orange 41 14 181 10 0 100 0.5 40 30 70 53.2 11 - -

Papaya 20 10 182 21 8 250 0.6 40 40 80 60.9 47 - -

Peach 6 20 190 9 0 250 0.1 70 60 170 6.6 16 - -
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Fruits Minerals (mg/100 g of Fresh Weight) Vitamins Referenc

 Ca P K Mg Na Fe Se Cu Mn Zn C A B6 B2  

Pear 9 12 116 7 1 180 0.1 80 50 100 4.3 1 - -

Pineaplle 13 8 109 12 1 290 0.1 110 930 120 47.8 3 - -

Plum 6 16 157 7 0 170 0 60 50 100 9.5 17 - -

Raspberry 1.14 5.7 71.8 15.9 0.5–1 1.06 - -
1.5–

2.0 
.37 5–92.2 - - -

Strawberry
2.2–

16

6.6–

24

51.2–

153

13–

15.9
1 410 0.4 50 390 140 5–90 1 1744 93 

Watermelon 7 11 112 10 1 240 0.4 40 40 100 8.1 28 - -

Units:  µg/100 g fresh weight (FW);  mg/100 g dry weight;  μg/100 g of fresh weight;  mg/100 g edible portion.

Without the ability to synthesize vitamins, these minerals are essential for the proper functioning of the human body due to

their antioxidant potential . Ascorbic acid, or vitamin C, exists mainly in red fruits, such as strawberries, cherries, red

raspberries, black raspberries, blackberries, cranberries, and blueberries, with a higher incidence in black currants,

oranges, and papayas, which also register considerable levels of vitamin C. Vitamin A is not found abundantly in fruits,

with a few exceptions, such as mangos, papayas, melons, and even watermelons. Vitamin B6 (riboflavin) is not present in

large amounts in fruits, but appears in appreciable amounts in blueberries, cherries, strawberries, cranberries, and plums

(Table 1).

The benefits of a diet rich in dietary fiber have long been known , namely in physiological responses to satiety,

gastrointestinal tract physiology , lower risk of colorectal cancer, lower total and LDL cholesterol, and cardiovascular

disease . The term dietary fiber consists of polysaccharides (cellulose, hemicellulose, pectins, gums, mucilages) and

lignin . The fiber content in the fruit ranges from 1 to 3.17 g/100 g FW, with pears and figs showing the highest

amounts, 3.1 and 2.9 g/100 g FW, respectively . The red fruits were recorded to possess lower fiber contents, where the

cranberries present the highest fiber content (35.7 mg/100 g FW), followed by the raspberries (5.8–6.5 mg/100 g FW) and

the blackberries (4.5–5.3 7 mg/100 g FW) .

Glucose, sucrose, and fructose are the main sugars in the fruits, and although there are significant variations in their

amount, according to Septembre–Malaterre et al. , the number of sugars in the fruit can vary between 5 and 22% of

fresh weight, with citrus fruits among those with the lowest percentage of sugars and bananas with the highest. Mikulic–

Petkovsek et al.  determined that fructose and glucose are the main sugars present in red fruits; not detecting sucrose

in blackberry and raspberry fruits.

Phenolic compounds are one of the major classes of secondary plant metabolites and are among the most abundant

natural antioxidants in the diet. Fruit is one of the foods richest in polyphenols, contributing to about half of the total

nutritional intake . They are associated with the prevention of numerous pathologies associated with oxidative stress,

acting as antioxidants, also exhibiting antibacterial, antitumor, antimalarial, and antiviral characteristics, among others 

. The phenolic potential of fruits depends on many factors, of which genetic attributes, maturity stage, and growing

conditions are of primary importance .

About 8000 different plant phenolic structures are known , which are divided into major families such as phenolic acids,

flavonoids, and stilbenes . In red fruits, most of the phenolics present belong fundamentally to two classes: phenolic

acids and anthocyanins, although each species has its profile . For example, blueberries are rich in quercetin and

caffeic acid (31.0–83.0 and 2.0–27.35 mg/kg fresh weight, respectively) , while lingonberries are rich in p-

coumaric and ferulic acid (37.6–251.1 and 16.2–221.7, respectively) .
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Among the flavonoids, flavanols and proanthocyanidins are the most present in the human diet. In fruits, catechins are

represented with high content in apricots and cherries . Proanthocyanidins are particularly abundant in cranberries

(418.8 mg/100 g fresh weight), blueberries (179.8–331.9 mg/100 g fresh weight), plums (215.9–256.6 mg/100 g fresh

weight), apples (69.6–141 mg/100 g fresh weight), blackcurrants (147.8 mg/100 g fresh weight), and strawberries (145

mg/100 g fresh weight) . Anthocyanins are also abundant in fruits, found mainly in the fruit skin. Anthocyanin content is

related to the increasing color intensity as the fruit ripens . Grapes are the main dietary source of anthocyanins. The

monomeric anthocyanins in grape skin extracts were mainly malvidin, particularly the malvidin-3-glucoside (1.40–7.09

mg/g of skin and 0.62–6.09 mg/g of skin, respectively) .

Lignans are found in relatively low concentrations in various fruits, having a positive impact on the prevention of heart

disease, mamma cancer, and osteoporosis . The highest content of lignan is observed in pears (15.56 mg/100 g food),

apricots (11.57 mg/100 g food), grapefruits (7.44 mg/100 g food), peaches (6.83 mg/100 g food), and strawberries (6.2

mg/100 g food) .

Stilbenes are rarely present in human food. Trans-resveratrol can be found in grape skins with well-known beneficial

health effects , namely in the prevention of human cardiovascular diseases. The highest concentration of this

phenolic compound was found in grape skin, with a higher concentration in the red compared to the white varieties .

The chemical composition of the fruit affects the sensory characteristics of the juice. According to Francis and Newton ,

aroma results from complex interactions of numerous chemical compounds. Essentially, the cultivar , agricultural

practices (conventional vs. organic) , post-harvest treatments, and the different techniques used to extend the shelf

life of fruit and fruit juices , lead to variations in their sensory characteristics. Several techniques can be used to

preserve the shelf life of this type of product, including thermal and non-thermal processing methods. However, their use

should prevent the loss of the sensory properties of the juice or limited effectiveness of the treatment, since, in the search

for the development of differentiating products, the mixed fruit juices are an option responding to the consumer demand

for new flavors with added nutritional value, better sensory characteristics, and more striking colors .

2. Juice Composition vs. Processing Technologies

The consumer demand for fruit juices is growing as they are a naturally rich source of bioactive compounds, however,

their susceptibility to spoilage limits the shelf-life . For this reason, the food industry is constantly searching for new

processing technologies to extend the shelf life with a low impact on the fruit juice quality, as the consumers are now more

conscious of health and diet . To extend the shelf life of fruit juices, the most commonly used preservation process is

thermal processing (pasteurization and sterilization). For example, apple juice is treated by HTST at 77 to 88 °C for 25 to

30 s  and orange juice by HTST at 90 to 95 °C for 15 to 30 s . However, this process may promote undesirable

quality changes in the juice composition and the sensory and nutritional values of the fruit juice .

For example, Vegara et al.  evaluated the influence of pomegranate juice pasteurized on anthocyanin stability and

verified that the application of thermal treatments (65 and 90 °C for 30 or 5 s) diminished the percentage of anthocyanins

in the polymeric form but increased the monomeric anthocyanins. Also, Aguilar-Rosas et al.  studied the high-

temperature short time (HTST) pasteurization process (90 °C; 30 s) of apple juice and observed a decrease in the

concentration of the total phenolic compounds (~32%), compared to the untreated juice.

Mena et al.  analyzed pomegranate juice before and after low-, mild- and high-temperature pasteurization (LTP, MTP,

HTP, at 65, 80, and 95 °C, respectively, for periods of 30 or 60 s, and observed that the total anthocyanin concentration

was different among thermally processed and untreated pomegranate juices, the lowest concentration being determinate

in the control (untreated pomegranate juices), while the highest concentration of anthocyanins was found in the juice

treated at 95 °C for 30 s.

Consequently, as consumers want fruit juices not only with extended shelf life but also with enhanced quality

characteristics, researchers are looking for innovative non-conventional technologies such as high-pressure (HP),

ultrasound (US), pulsed electric fields (PEF), ultraviolet-C radiation (UV-C), low-pressure plasma (LPP) and Ohmic

heating (OH) (Table 2) to achieve the consumer demand for fruit juice with an extended shelf life, better quality, and an

improved nutritional profile . Recent studies reported a positive impact of non-thermal processing on juice quality .

Optimized non-thermal processing enhanced the content of the bioactive compounds in fruit juices and consequently their

beneficial health effects .

Table 2. Thermal and non-thermal processing technologies of fruit juices.
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Juice Conditions Effect References

Pasteurization-Conventional heating

Orange juice

95 ℃, 1 min Reduction of pectin methylesterase activities (88.3%)

90 ℃, 50 s
Sensory quality was the limiting factor for the shelf life of

conventionally pasteurized juice, at 50 days

90 ℃, 30 s Significant loss of the content of total carotenoid pigment

Pulsed electric field (PEF)  

Orange juice

35 kV/cm, 4 μs, 40 °C
8% loss of vitamin A, 1% loss of citric acid

no change in Brix, pH, vitamin C, and viscosity

40 kV/cm, 97 ms, 45 °C

PEF-processed juice retained more ascorbic acid, flavor,

and color than thermally processed juice (90 °C/90 s)

PEF-processed juice sensory evaluation of texture,

flavor, and overall acceptability was ranked highest than

thermally processed juice

20 kV/cm, 25 µs

PEF treatments preserved the characteristic compounds

associated with a fresh flavor (e.g., dl-limonene, β-

myrcene, α-pinene, and valencene) more effectively than

an intensive thermal treatment (121 °C/20 min)

Apple Juice

35 kV/cm, 94 µs No change in natural color and Vitamin C

35 kV/cm, 4 µs

pH, total acidity, phenolic and volatile compounds were

less affected by PEF than by HTST treatment (90 °C /30

s)

 High-pressure processing (HHP)  

Orange juice

600 MPa, 4 min at 40 °C
High-pressure treatment led to lower degradation of

ascorbic acid compared with pasteurization (80 °C/60 s)

500 MPa, 5 min at 25 °C 2% loss of vitamin C, no change in Brix, pH, and color

400 MPa, 1 min at 40 °C
5%-8% loss of vitamin C, no change in Brix, pH, and

color

600 MPa, 15 min
93.4% retention rate of anthocyanin (cyanidin-3-

glucoside); 85% retention rate of ascorbic acid

Lemon juice 450 MPa, 2, 5, or 10 min
Slight effects of HPP on the compounds and

physicochemical properties

Apple juice 400 MPa, 10 min
High-pressure treated apple juice sensory quality was

higher compared to pasteurization (80 °C, 20 min)
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Juice Conditions Effect References

Strawberry

juice

200–500 MPa, 20 min, 20

°C

No major changes in strawberry juice aromatic volatile

profile composition after HP treatment. Changes

appeared in the composition of aromatic compounds

after sterilization (120 °C, 20 min)

 Ultra-sonication (US)  

Orange juice

20 kHz, 1500 W, 10 min,

32–38 °C
No changes in pH, °Brix, and titratable acidity

20 kHz, 1500 W, 8 min, 10

°C

Changes in color and ascorbic acid concentration during

storage

Grapefruit

juice

28 kHz, 30, 60, and 90

min, 20 °C

Improvement in the ascorbic acid, total phenolics,

flavonoids, and flavonols. No changes in the pH, acidity,

and °Brix value. Differences in the color values with

overall quality improved

 Cold plasma  

Pomegranate

juice

5 min; 4 cm ; 0.75

dm /min

Pasteurization and plasma treatment resulted in total

phenolic content increasing by 29.55% and 33.03%,

respectively

3 min; 5 cm ; 0.75

dm /min

Anthocyanin content increased after cold plasma

treatment by between 21% and 35%

Higher anthocyanin stability

 Ultraviolet-C radiation (UV-C)  

Orange juice

>230 J/L
No changes in aroma and color

11% loss of vitamin C

12–48 kJ/L

Ascorbic acid losses increased with the UV-C application

No changes in total phenols and antioxidant capacity No

changes in pH, total soluble solids, and titration acidity

Pomegranate

juice
12–62 J/mL

No changes in total phenol content

No changes in pH, total soluble solids, and titration

acidity

Ohmic heating (OH)
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Juice Conditions Effect References

Watermelon

juice

90 °C/15–60 s

No changes in lycopene

High color stability

Decrease in total phenolic compounds

95 °C/1, 3 and 5

min/voltage gradients of

10, 13.33, 16.66, 20 and

23.33 V/cm at 50 Hz

Voltage gradient and treatment time was statistically

significant with change in pH and total color difference

For example, Linhares et al.  compared the composition, stability, and bioactive compounds of juices produced with

different processing technologies, thermal technologies such as high-temperature short time (HTST), ultrahigh

temperature (UHT), and non-thermal technologies such as high power ultrasound (US), UV-pulsed-light and low-pressure

plasma (LPP). These authors showed that all the juices produced with non-thermal processes increased the sugar

content (glucose and fructose), and the amino acid betaine, except for the juices produced by the combination of the

ultrasound process followed by low-pressure plasma (US.LPP). On the other hand, the juices produced by HTST and

UHT showed higher concentrations of fatty acids and phenolic compounds.

Another example of non-thermal technology is the application of high-pressure (HP) and high hydrostatic pressure (HHP)

processing on acid fruit juices. This technology is effective in the inactivation of microorganisms (meeting the Food and

Drug Administration requirement of a 5-log reduction) and denaturation of diverse enzymes , without loss of vitamins,

pigments, and compounds related to sensory characteristics . High-pressure (HP) processing is preferred to thermal

processes in terms of holding phenolic compounds. HP and HHP treatment at moderate temperature is described to have

an insignificant effect on the anthocyanin concentration of diverse red fruit juices, as well as the flavor, taste, and color

changes being minimal . However, these authors also showed that the bioactive content of red fruit reduced with the

intensity of the treatment in terms of processing time and pressure level. Varela-Santos et al.  evaluate the effect of

HHP processing (350–550 MPa for 30, 90, and 150 s) on the concentration of anthocyanins, phenolic compounds, and

color of pomegranate juice during 35 days of storage at 4 °C. These authors showed that HHP juice processing has a

perceptible effect on the total color difference (ΔE) between untreated and treated samples, and the highest color

difference was observed at day 35 of storage for 550 MPa during the 90 s. These results showed clearly that the color

stability of pomegranate juice is dependent on the processing conditions. Orange juice showed an increase in flavanone

after HPP processing (400 MPa, 40 °C, 1 min), compared to the untreated juice . Also, Sánchez-Moreno et al.  and

Oms-Oliu et al.  observed in orange juice treated with HP (400 MPa/40 °C/1 min) an enhancement in the concentration

of naringenin by 20% and the concentration of hesperetin by 40%, compared with the untreated orange juice and the

preservation of the orange juice sensory characteristics.

In addition, pulsed electrical field (PEF) processing, which applies short bursts of high voltage electricity for

microorganism inactivation, has been successful in a variety of liquid products with relatively low viscosity and electrical

conductivity such as orange juice and cranberry juice . PEF has a high potential for microorganism inactivation and

enzyme denaturation, extending the shelf life and preserving the nutritional, vitamin, aroma, and sensory characteristics

due to the very short processing time and low processing temperature. Blueberry juice processed by HP (600 MPa/42

°C/5 min) and processed by PEF (36 kV/cm, 100 μs) stored refrigerated at 4 °C for 56 days, showed a 50% of ascorbic

acid reduction in both unprocessed blueberry juices and in the PEF-treated juices at the end of the refrigeration time.

However, HPP-treated blueberry juice better maintained the ascorbic acid content during the storage time with a reduction

of 31%, and the anthocyanins in the blueberry juice treated with HP were also better preserved. Sánchez-Moreno et al.

 considered that the PEF treatment did not modify flavanone content, but in general, the pasteurization process led to a

diminished naringenin content (16.04%), with no modification in hesperetin. They also observed that even though the

losses in total vitamin C were <9%, treatments with the higher temperatures (HPT) (90 °C/1 min), tend to show a greater

reduction in the concentration of both forms of vitamin C. HP treatment (400 MPa/40 °C/1 min) led to an increase in

carotenoid release (53.88%) and vitamin A value (38.74%). PEF treatment did not modify individual or total carotenoid

content. Traditional thermal treatments did not have any effect on the total carotenoid content or on the vitamin A value. In

apple juice, the treatment with PEF decreased the concentration of total phenolic compounds (~15%) compared to the

untreated juice, however, this decrease was lower than that observed with thermal pasteurization, which decreased the

phenolic compounds by 32% . In summary, according to Sánchez-Moreno et al. , HP and PEF technologies were

more effective than HPT treatment in preserving the bioactive compounds of orange juice. Likewise, Agcam et al. 

showed that the total phenolic concentration of orange juice was enhanced after the PEF and thermal pasteurization

treatments. Orange juice processed by PEF contained higher phenolic compound concentrations than those processed by

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[54] [88]

[89]

[90]

[88]

[56] [88]

[91]



the heat. The orange juice treated with PEF had more stable flavonoids and phenolic acids than those treated with

thermal pasteurization. The PEF-treated samples had higher sensory scores than the heat-treated samples. Therefore,

these authors suggested that the application of PEF processing to orange juice seems to be a promising alternative to

thermal pasteurization to obtain an extended shelf life and better preservation of phenolic compounds and should be

taken into consideration for industrial-scale production.

In recent times, cold plasma was considered suitable for use with fruit juices . Therefore, cold plasma is accepted as

a potential, novel, non-thermal technology for the quality improvement of fruit juices, and numerous research works have

studied the application of cold plasma in fruit juices . The treatment is performed under milder

temperatures (< 70 °C), which contributes to the preservation of sensory characteristics and the maintenance of bioactive

compounds in fruit juices . Bursać Kovačević et al. , using a cold atmospheric gas-phase plasma in pomegranate

juice, observed an increase in the concentration of anthocyanin between 21% and 35% compared to the untreated juice,

which confirms that the cold plasma has a positive impact on anthocyanin stability. More recently, de Castro et al. 

studied the application of cold plasma excitation frequency (200, 420, 583, 698, and 960 Hz) in the juice physicochemical

properties. These authors concluded that after the application of this non-thermal treatment the content of ascorbic acid

was increased by increasing the plasma excitation frequency. According to these authors, cold plasma application could

be an interesting method to enhance the nutritional quality of fruit juices. It was also observed in diverse fruit juices, for

example, strawberry juice, blackcurrant juice, and raspberry juice, that anthocyanins are stable to HP treatments, such as

the application of cold plasma excitation frequency .

Several research works have been conducted on different fruit juices using ohmic heating which is also known as

electrical resistance heating, such as the inactivation of microorganisms  and enzymes, for example, pectin

methylesterase (EC.3.1.1.11) also called pectinesterase  and polyphenoloxidase, for minimizing enzymatic

browning . In orange juice treated with ohmic heating around 96% of the pectin methylesterase activity was reduced as

observed by Demirdöven et al. . In fruit juices, the use of ohmic heating to inactivate enzymes does not affect the juice

flavor . Hashemi et al.  compared different ohmic heating treatments (150, 200, and 250 V; 120 s; 99.4 °C) with the

conventional heating process (90 °C; 15 min) for the inactivation of microorganisms in blended citrus juice (sweet lemon

and orange). These researchers showed that the inactivation rate of pathogenic bacteria using ohmic heating increased

by the increase of voltage from 150 to 250 V. Also, Darvishi et al.  studied the influence of ohmic heating on the

concentration of black mulberry juice in comparison to the traditional heating treatment. Using ohmic heating the phenolic

concentration of the juice was 3–4.5 times greater than if using traditional heating treatment.
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