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Diabetic retinopathy represents a leading cause of vision loss, causing a significant structural and functional impairment of

the retinal and choroidal capillary network.  Diabetes mellitus is a group of diseases characterized by chronic

hyperglycemia, and the most common expressions of this condition are type 1, type 2, and gestational diabetes.
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1. Introduction

Diabetes mellitus is a group of diseases characterized by chronic hyperglycemia, and the most common expressions of

this condition are type 1, type 2, and gestational diabetes . While type 1 diabetes is an autoimmune disease causing an

abnormal immune response against insulin-producing β-cells, significantly blunting the expression of this hormone , type

2  and gestational diabetes  are also characterized by a certain level of skeletal muscle, liver, and adipose tissue

insulin resistance. Genetic, environmental, and behavioral factors, as well as maternal obesity, can cause these

conditions. Diabetes incidence is increasing worldwide : the population affected by this disease triplicated in the last 40

years , and it keeps on growing . Diabetes-associated conditions affect multiple organs and organ systems, resulting

in polyneuropathy , angiopathy , infections , nephropathy , dementia , cardiovascular complications , lower

limb amputation , and blindness . These phenomena are often irreversible and accompanied by a structural and

functional impairment of the tissue microcirculation . Vascular degeneration is particularly prominent in the eye, leading

to diabetic retinopathy (DR) . DR affects patients aged between 20 and 65 , and its symptoms appear about ten

years after diabetes onset . It has been estimated that 20–30 million patients are at risk of irreversible vision loss

because of DR , which is currently one of the leading causes of visual impairment (Figure 1)  and the

leading cause of blindness in preventable retinal diseases .

Figure 1. Global causes of blindness: In 2015, it was estimated that DR caused blindness in 400,000 people. Diabetic

retinopathy represents 1% of the total blind population. Data were extrapolated from Akland et al. .

DR is caused by a significant retinal and choroidal capillary network degeneration, due to a local chronic inflammation

sustained by advanced-glycation end-products (AGEs) , reactive oxygen species (ROS) , growth factors, and

interleukins .
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In DR, the blood–retinal barrier (BRB) becomes highly permeable, causing local edema, necrosis, and ischemic

phenomena . The BRB function depends on the integrity and proper conformation of endothelial intercellular junction

complexes that are already significantly affected during the first phases of DR. A high vascular endothelial growth factor

(VEGF) pathway activity  and a misbalance in ROS generation and elimination  induce junction disassembly

and leaky blood capillary formation . These phenomena can also affect the protein composition of the vitreous humor

.

To re-establish the normal tissue vascular flow, a neo-angiogenesis process driven by VEGF expression occurs in the

retinal and choroidal tissue , potentially causing retinal detachment and vision loss .

2. Clinical Management of DR

Clinically, DR is classified in non-proliferative and proliferative DR, and in six stages of retinal degeneration, varying from

small bleeding events to significant neovascularization and retinal detachment (Figure 2) . In addition to

structural decline, the stress occurring during DR affects photoreceptor cell function and viability .

Figure 2. Different stages of DR: (A) Healthy retina (B) mild NPDR (detectable presence of micro aneurysms) (C)

moderate NPDR (significant presence of micro aneurysms) (D) severe NPDR (Intraretinal microvascular abnormalities)

(E) PDR (presence of hemorrhages). Adapted from Shankar et al. .

Optical coherence tomography and fluorescein angiography are commonly used to properly diagnose DR , while

current therapies for the advanced states of this condition include invasive interventions based on laser photocoagulation

(pan-retinal photocoagulation ) and vitrectomy . Laser therapy aims at mitigating potential hemorrhagic events by

ablating retinal capillary microaneurysms. This procedure requires repetitive applications, and can cause hemorrhages.

On the other hand, vitrectomy is a surgical intervention performed to reduce tissue edema and clean the retina from

cellular and tissue debris.

Systemic pharmacological treatments  aim at lowering blood glucose  and lipid  levels by adjusting doses and

frequency of insulin administration, or administering therapeutics like fenofibrate  and statins , respectively. In this

context also anti-hypertensive therapies  showed beneficial properties to mitigate DR progression. However,

pharmacological treatments locally administered via subretinal and intravitreal injections are preferred to rapidly and

vigorously target the posterior segment of the eye .

Typical medications for this disease target the vascular pathologic process and include vascular protective  and anti-

inflammatory drugs , angiogenesis inhibitors , modulators of the microcirculation . More recently,

peroxisome proliferator-activated receptor (PPAR) agonists showed beneficial effects in reducing inflammation,

normalizing vascular function, and mitigating ROS-associated damages . These therapies can have a heterogeneous

patient response, side effects, and sometimes high associated costs .

In addition, when locally inoculated, they still need to overcome the ocular biological barriers, significantly mitigating their

retinal targeting properties, without mentioning the discomfort provoked to the patient by these therapies.

Nanomedicine can provide different benefits to improve DR treatments, increasing therapeutic residence time in the eye

and providing controlled drug release. This review will examine different nanoplatforms tested for this purpose, focusing

on the material properties that make these technologies attractive for DR. In particular, we focused on technologies

designed to normalize vascular degeneration in diabetic retinopathy that represent the primary cause of this disease. A

few attempts  to develop nanotechnology for reversing and mitigating diabetic retinopthy neurodegeneration were

recently performed, but they do not represent the subject of this review. Article inclusion was performed using Google

Scholar and PubMed search engines between august and November 2021. A date sorting filter was applied to include

papers not older than five years. To select the included articles, we performed literature research using combinations of

the following keywords: diabetic retinopathy; ocular barriers; nanomedicine; polymer nanoparticles; albumin nanoparticles;

inorganic nanoparticles; extracellular vesicles.
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3. Nanomedicine Application in DR

The application of nanomedicine in DR could improve current therapies for this disease. Drug encapsulation in

nanostructure can increase drug solubility and retention in the vitreous humor after the injection. In addition, controlled

release properties can reduce the number of injections necessary to achieve significant clinical results. Nanocarrier size,

surface charge, and shape are fundamental parameters to consider for developing effective drug formulations for

intravitreal injections. While a larger size can increase the drug retention time and controlled release, it can negatively

impact particle diffusion in the vitreous humor and retinal targeting. Carriers smaller than 500 nm showed a certain degree

of diffusion that was inhibited when the particles were larger than one micron .

On the other hand, Koo et al. correlated particle diffusion with their surface charge . They synthesized seven groups of

polymeric, hybrid delivery platforms with a relatively narrow size range (between 200 and 350 nm) and very different

surface charges (between -25 and +30 mV). The scientist discovered that a strong positive charge inhibited particle

(polyethyleneimine-PEI) diffusion in the vitreous humor, probably due to ionic interactions with the negatively charged

proteins of this matrix. On the other hand, a moderate positive charge coupled with antifouling agents (glycol chitosan

alone or hybridized with PEI) significantly increased their diffusion in the vitreous humor, and allowed retinal inner limiting

membrane targeting. Finally, anionic particles based on albumin could also penetrate the deeper layers of the retina.

However, the size of these particles was not compatible with the pore size of the retinal tissue, and more investigation

indicated that Muller cells could favor this process, likely through active transport. Moreover, the shape of the particles

could represent an essential factor in designing retina-targeted nanocarriers. In particular, Shafaie et al.  demonstrated

that rod-like nanoparticles could efficiently diffuse in the vitreal matrix, but more research on this topic is needed.
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