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The pumping system is a critical component in various industries and consumes 20% of the world’s energy

demand, with 25–50% of that energy used in industrial operations. The primary goal for users of pumping systems

is to minimise maintenance costs and energy consumption. Life cycle cost (LCC) analysis is a valuable tool for

achieving this goal while improving energy efficiency and minimising waste.

hidden Markov model  life cycle cost  pump

1. Introduction

Various industries worldwide depend on pumping systems for their daily operations. Optimising a pump is

challenging across multiple application areas, like irrigation, water supply for the domestic sector, air conditioning

systems, refrigeration, and the oil and gas industries, etc. . In the world of pumps, two types of horizontal end

suction centrifugal pumps are more widely used than all the others. They are the ANSI pumps designed and built to

the American National Standards Institute standards and the API pump that meets the American Petroleum

Institute standard 610 requirements for general refinery service. In order to handle high temperature and pressure

applications of a more aggressive character, the API pump is the only option for the oil refinery business.

Information on maintenance, failure, and repair times is provided for both pumps. This information has been used

to demonstrate how precise predictions for life cycle costs for the pumps used in the hydrocarbon processing

businesses may be made.

There is additional discussion of the fundamental ideas of LCC and its uses. In terms of global pumps, there is a

need to apply LCC methodology to pumps, considering the stages of an LCC analysis, the need to identify the

significant cost drivers, and the advantages of performing an LCC study. When the speed of the motor fluctuates in

applications requiring variable torque, such as pumps, the torque produced by the pump likewise varies

appropriately. An adaptive neuro-fuzzy inference system (ANFIS) is used in conjunction with DTC to lessen torque

sags and enhance the reactivity of the control algorithm. The suggested ANFIS-based DTC has greatly reduced

flux, torque, and stator current ripples compared to the conventional DTC and the fuzzy logic-based DTC. The

suggested ANFIS-DTC results are verified using MATLAB simulations, and the system’s performance is

determined to be good when evaluated at various rotational speeds. For the PMSM to drive centrifugal pumps, a

new speed control based on adaptive neuro-fuzzy direct torque control (ANFIS-DTC) has been proposed in the

research . Through the Matlab Simulink environment, the performance characteristics of the conventional DTC,

DTC with fuzzy logic control, and DTC with ANFIS are compared in terms of stator current, electromagnetic torque,
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stator flux, rotor speed, and pump output pressure. Compared to traditional DTC and DTC with fuzzy logic control,

the suggested ANFIS-DTC controller displays satisfactory results in removing overshoot and ripples in torque, flux,

and speed.

Some statistical measurements of the mean time between failures are also provided. For pumping systems, the

Hydraulic Institute presented a life cycle cost model. Initial costs, installation and commissioning expenses, energy

costs, operational costs, maintenance and repair costs, downtime costs, environmental costs, and

decommissioning and disposal costs are all considered in the model. An example has been used to show how to

apply the methodology. The guidelines developed by Euro-pumps to assist users, consultants, and design

engineers in optimising pumping systems with regard to the whole life cost were presented in the research, along

with an explanation of the significance of life cycle costs. The optimal operation aims to save electricity expenses,

consume maximum energy, reduce water leakage, prevent wear and tear, etc. . Various optimisation algorithms

are helpful for reducing electricity expenses and saving consumption of energy, such as the heuristic algorithm ,

PSO , ant colony, genetic algorithm , etc. However, if the system requires transient changes, CNN model  is

required to optimise the system. Due to the extreme progress of technology, the costs of variable speed drives

have significantly decreased, which is helpful for the pumps used in building conditioning systems. Control and

optimisation of variable speed pump operation is a challenging issue. Control engineers have a great responsibility

to control the robustness of the pump, improve the operating efficiency, prolong the service life, etc. . An energy-

efficient pump scheduling strategy can reduce maintenance and operating costs. In this way, it is possible to

reduce CO  emissions . Various researchers have conducted extensive studies on pump optimisation and

scheduling. Mixed integer nonlinear programming has been used to solve the structural optimisation problem, as

the problem is not convex. A binary separable program method has been developed for the optimum global system

. The method provides the best configuration of the pump series. The optimal pump scheduling algorithms have

been introduced for the water distribution system. An energy-efficient pump scheduling strategy has enormous

potential to significantly reduce pump systems’ operational and maintenance costs . For instance, up to 90% of

the electricity used in the water industry is consumed by pumps. Purchasing decisions for a pump and the

associated system components are often based on the lowest offer rather than considering the system’s cost over

its life cycle .

To achieve the lowest energy usage and cost, managers must carefully match these interdependent parameters

and ensure they are maintained during working conditions . A pumping system typically lasts 15 to 20 years.

Some costs will be incurred initially, while others may appear at various points throughout the existence of the

multiple options under consideration. Therefore, determining a current or discounted value of the LCC is

conceivable and possibly even necessary to properly evaluate the various alternatives .

2. Background

There is a significant body of research on pumping systems’ life cycle cost analysis (LCCA). Three distinct pumps

have undergone an LCC analysis using a technique based on dependability and maintainability principles, and the

results have been compared. Two pumps have been chosen from the literature for analysis, and the information
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therein is used. The third pump is chosen from a reputable Indian pump manufacturer, and the necessary

information is acquired directly from the supplier. The idea of the predicted number of failures in a particular time

interval has been used to model the maintenance and repair costs . A methodology for calculating the net

present value (NPV), lifetime costs (LCC), energy use, and greenhouse gas emissions related to a water

distribution system (WDS) pump using a process-based life cycle assessment (LCA) and an economic input-output

LCA (EIO-LCA) model has been described in the research. The methodology takes into account the stages of

production, usage, and end-of-life (EOL) disposal in addition to less common operations, such as discharge valve

throttling, pump testing, deterioration, refurbishment, and variable speed pumping. A case study presents the

technique, evaluates the effects of various operating scenarios, and establishes the relative significance of various

processes . A study compares and contrasts decentralised greywater reuse systems’ life cycle costs and

anticipated financial gains.

In comparison to the current centralised systems, the extra life cycle expenses and expected life cycle financial

benefits of the groundwater pumping systems and on-site greywater reuse systems are assessed. Before the

wastewater effluent is dumped into the environment, a sewer network gathers used water for treatment at a

centralised wastewater treatment plant. Centralised systems refer to the traditional form of water delivery where

one centralised treatment plant treats and distributes potable water to a large service area . The optimal design

and rehabilitation of a water distribution network are being provided using a new multiobjective formulation to

minimise life cycle cost and maximise performance. The initial cost of the pipes, the cost of replacing old pipes with

new ones, the cost of cleaning and lining existing pipes, the anticipated repair cost for pipe breaks, and the salvage

value of the replaced pipes are all included in the life cycle cost. The resilience index has been modified for use in

water distribution networks with multiple sources as the performance measure suggested in this study. In order to

find a solution for the design and rehabilitation challenge, a new heuristic strategy is suggested . In order to

guarantee the excellent performance of chilled water pump systems and achieve the lowest annual total cost while

taking input uncertainties and system reliability into account, this research proposed a reliable, optimal design

method that is based on a reduced life-cycle cost. It is accomplished by optimising the number of chilled water

pumps, overall pump flow capacity, and the pump pressure head .

The suggested approach is tested and shown using a case study. The amount of literature on the life cycle cost of

wastewater treatment has significantly increased over the past two decades. The employment of several

frameworks and approaches was caused by the lack of a generally accepted life cycle costing methodology. Over

the past ten years, a progressive transition from conventional to environmental and societal life cycle costing has

been observed. Techniques and approaches for conducting life cycle cost analysis are also changing.

Nevertheless, there is still a need for a thorough, systematic assessment of life cycle costing techniques and

methodologies in wastewater treatment. A thorough and systematic evaluation offers the chance to track recent

advancements in the subject and pinpoint areas that require additional study . In order to effectively assess the

long-term treatment performance and cost under influent fluctuations, this study uses artificial neural networks

(ANNs) as surrogate models for water resource recovery facility (WRRF) models. A current facility that handles

combined domestic and industrial wastewater served as the model for the five WRRFs. Even though the prediction
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performance (R-square) somewhat declines with increasing model complexity, the ANNs satisfactorily capture

nonlinear biological processes for all five WRRFs. By using ANNs trained by simulation data from steady-state

models to simulate long-term (10-year) performance with monthly influent fluctuations, the application of ANNs in

WRRF models is expanded, and their effectiveness in removing phosphorus (P) and nitrogen (N) is expanded.

Because enhanced biological phosphorus removal and recovery (EBPR) is more susceptible to influent

characteristics altered by storm water inflow, EBPR-S has the greatest resistance. To create adequate working

conditions, mine-dewatering techniques must be used to eliminate water flow into the mining area. One method of

mine dewatering involves the use of pumps. Centrifugal and positive displacement pumps are primarily employed

in mine dewatering operations. The primary goal of this project is to create a simple decision-support tool for

choosing the most cost-effective pump type.

The ANN model employs time and fitted measurements from its present and prior points as input, together with

Weibull hazard rates for root mean square (RMS) and kurtosis. The output is chosen to be the normalised life

percentage in the meantime. In doing so, reducing the degradation signal noise from target bearings and raising

the prognosis system accuracy is possible. The feedforward neural network (FFNN) with the Levenberg–Marquardt

training method is used for the ANN RUL prediction . To reduce catastrophic failure events, the notion of

remaining useful life (RUL) is used to predict the life span of components. It is essential to have a continuous

monitoring system that records and identifies trends, as well as sources of component degradation prior to failure

as customer demand for dynamically regulated systems increases. The goal of the early warning capacity is to

identify, localise, and gauge the severity of defects using fault propagation and identified machine or component

deterioration to forecast RUL. RUL is typically computed randomly from data on condition and health monitoring

that is readily available. Remanufacturing engineers must consider a device’s RUL when deciding which parts

should be removed from service for remanufacturing. Using case studies, some techniques for estimating RUL,

including those for automotive components, rotating equipment, aviation engines, electro-hydraulic servo valves,

electronic systems, low methane compressors, bearings, etc., are examined . Further research has been carried

out based on support vector regression analysis, XGboost, and PSO for pump performance curve analysis. The

performance prediction model has been trained on 428 samples in total, while 107 samples are used to evaluate

the model’s capacity to generalise, and 46 examples are used to confirm the model’s ability to predict outcomes

. Some research based on Table 1 describes various investigations into LCC analysis and RUL application in

industrial sectors and their results.

Table 1. Various research based on LCC analysis.
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Author Research
Technology Aim of the Research Research Outcome

Galagedarage
Don, M., and
Khan, F. 

Hidden Markov
model–

Bayesian
networks

To predict and identify
the faults

The suggested method adequately predicts
all ten flaws and isolates eight of the ten
defects found. The maximum acceptable

noise levels for the various flaws were
established, and the isolation accuracy

[11]



Life Cycle Cost Analysis of Pumping System | Encyclopedia.pub

https://encyclopedia.pub/entry/50192 5/10

Author Research
Technology Aim of the Research Research Outcome

changed depending on the noise level
added to the testing data.

Hofmann, P.,
and Tashman,

Z. 

Hidden Markov
model

To detect the failure
events

It is combined with a Markov mixed
membership model (MMMM) and an
observable Markov decision process

(POMDP) for each asset to evaluate the
trade-off between the risk of failure and

prolonged operational hours to dynamically
optimise the strategy for when and how to

maintain the asset.

Waghmode,
L.Y., et al. 

Economic
input/output
LCC model

To learn when the pump
will end its useful life and

how much energy the
water distribution system

uses

Refurbishing and variable speed pumping
can improve a pump’s overall sustainability
by reducing lifetime expenses, particularly

in terms of energy use and GHG
emissions.

Jayaram, N.,
and Srinivasan,

K. 

Multiobjective
formulation

To determine the optimal
design and rehabilitation

of water distribution
network

As novel multiobjective formulations for the
optimum network design and rehabilitation,

the maximisation of the least modified
resilience index and the minimisation of life

cycle cost have been proposed. The
adjusted resilience index measures the
network’s ability to handle uncertainty.

Cheng, Q., et
al. 

Robust optimal
design

Calculating the
uncertainties generates

the cooling load
distribution and hydraulic

resistance distribution
using Monte Carlo

simulation

When uncertainties are taken into account,
the annual average cooling load varies

significantly. The design cooling capacity
and chilled water flow will most likely be

large if the design cooling capacity is
designed based on the cooling load without

considering uncertainties. For high
accuracy and quick computing, the Markov

method can be used to obtain the
probability distribution of the system state.

Ilyas, M., et al.
Various

conventional
approaches to
LCC analysis

To find out the impact of
LCC in wastewater

treatment

The authors examined 66 studies on the
LCCA of pumping systems and discovered
that energy cost was the most significant
factor in life cycle cost. They also found

potential cost benefits from using variable
speed drives and high-efficiency pumps.

Li, S., et al. Artificial neural
network

Assessing water
resource recovery
facilities’ long-term

treatment performance
and nutrient removal

Five different WRRF treatment options’
long-term nutrient removal efficacy and
cost-effectiveness have been compared
using a unique methodology. Using ANN

models for long-term simulation can
significantly reduce the computational load
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3. Importance of Life Cycle Cost

If pumps are utilised for more than 2000 h annually, energy consumption, which is often one of the most significant

cost components, may dominate the LCC. Information about the output pattern of the system is gathered to

calculate energy consumption. If the output is continuous or nearly so, the calculation is straightforward. A time-

based consumption pattern must be established if the production fluctuates over time .

Operating costs are the labour expenses related to running a pumping system. Depending on the complexity and

duty of the system, these vary substantially. A pump must be efficiently and routinely serviced to obtain the best

performance . Unexpected downtime and lost production costs account for a sizeable portion of the total LCC

and can have an impact comparable to those of energy and replacement part costs. Most of the time, the price to

dispose of a pumping system will not change substantially based on its design . A life cycle cost analysis (LCCA)

is an economic evaluation method used to compare different alternatives over the life cycle of an asset. In the case

of a pumping system, an LCCA would compare the costs of various pump systems over their expected lifespan,

including initial purchase, maintenance, energy, and replacement costs. The application of artificial intelligence (AI)

in pumps can significantly improve their energy efficiency, reduce maintenance costs, and prolong their lifespan. It

is seen that with AI applications, most of the costs are reduced, and it becomes possible to save energy.

There can be a distinction when a system includes disposal arrangements as a component of its operational

arrangements. A total life cycle cost analysis (LCCA) is the methodology for evaluating bridge intervention solutions

that are presented in the study . Life cycle cost (LCC) analysis involves assessing the total cost of owning

and operating a system or equipment throughout its life cycle, including acquisition, operation, maintenance, and

disposal. Various types of research show in Table 2 that LCC analysis can be performed to compare the costs

associated with using pumps in AI applications and without AI applications .

Author Research
Technology Aim of the Research Research Outcome

costs under stochastic
influence characteristics

while maintaining acceptable accuracy,
making it easier to couple complicated

process models.

Aktaş, Ali Burak Decision
support tool

Utilising LCC analysis,
this evaluates centrifugal

and positive
displacement pumps in

mine dewatering
operations and creates a

program as a decision
assistance tool

Since LCC focuses on overall costs rather
than the initial capital investment cost of

the systems, it can be utilised as a
decision-support tool. The total cost of the
centrifugal pump is more than the positive

displacement pump.

Saon, S., and
Hiyama, T. 

Artificial neural
network

Predicts the remaining
useful life of rotary

machine

CBM prioritises a machine’s precise RUL to
boost dependability and reduce

maintenance expenses. This research
recommends utilising ANN to provide a

more accurate estimate RUL of a bearing
failure. In this case, the ANN model’s input

is the Weibull hazard rates of RMS and
kurtosis from the current and prior points.
The output, which is the normalised life

percentage, is also chosen.

Salunkhe, T., et
al. 

Various
conventional

methods

To predict the remaining
useful life of mechanical

components

Model-based approaches are employed
when there is a chance that the system

could be mathematically modelled.
When it is impossible to create a

mathematical model of the system, data-
driven approaches are applied.
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Table 2. Various results based on LCC analysis.
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