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Oxygen deprivation or hypoxia characterizes a number of serious pathological conditions and elicits a number of
adaptive changes that are mainly mediated at the transcriptional level by the family of hypoxia-inducible factors
(HIFs). The HIF target gene repertoire includes genes responsible for the regulation of metabolism, oxygen
delivery and cell survival. Although the involvement of HIFs in the regulation of carbohydrate metabolism and the
switch to anaerobic glycolysis under hypoxia is well established, their role in the control of lipid anabolism and
catabolism remains still relatively obscure. Recent evidence indicates that many aspects of lipid metabolism are
modified during hypoxia or in tumor cells in a HIF-dependent manner, contributing significantly to the pathogenesis

and/or progression of cancer and metabolic disorders.

HIF cancer hypoxia lipids

1. The Involvement of Hypoxia-Inducible Factors in the
Regulation of Lipid Metabolism

When oxygen is sparse, cells adapt to hypoxia by reprogramming the expression of a number of genes involved in
energy metabolism. The role of HIF-1 in the activation of genes encoding for proteins involved in carbohydrate
metabolism has long been established (reviewed in 2. HIF-1 not only promotes glucose uptake by activating the
transcription of transporters GLUT1 and GLUTS3, but also enhances anaerobic energy production, as it upregulates
most of the glycolytic enzymes (including HK1/2, ENO1, PGK1 and PKM2) and proteins that facilitate the synthesis
and excretion of lactate (LDH and MCT4). Moreover, in order to reduce mitochondrial function for decreasing
consumption of oxygen and ROS production, HIF-1 stimulates the expression of pyruvate dehydrogenase kinase
(PDK1) and BNIP3 Bl ppK inhibits the pyruvate dehydrogenase complex and blocks the conversion of
pyruvate, the glycolytic end product, to acetyl-CoA, which normally feeds into TCA cycle by producing citrate.
Therefore, the flow of pyruvate into the mitochondria is decreased, fueling the production of lactate by LDH in the
cytoplasm. On the other hand, BNIP3 triggers mitochondrial autophagy, further reducing mitochondrial metabolic

processes.

Despite the extensive literature on HIF-dependent regulation of carbohydrate metabolism, the effects of hypoxia
and HIFs on lipid metabolism have only recently become the focus of closer examination (Figure 1). Fatty acids
(FAs), provided either by exogenous FA uptake or de novo synthesis, are used as substrates for oxidation and
energy production, membrane synthesis, energy storage in form of triacylglycerols (TAGs) and production of

signaling molecules and, therefore, are essential for cell survival and proliferation both under normoxia and
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hypoxia. However, as FA oxidation takes place inside mitochondria and requires oxygen, FA metabolism has to be
modified under hypoxia in order to serve mainly processes other than energy production. Furthermore, as
conversion of glucose into citrate—the major source of cytoplasmic acetyl-CoA and FA precursor—is prohibited
under hypoxia due to the inhibition of the TCA cycle, alternative sources of FA precursors have to be exploited. In
tumor cells, which usually have to grow in a hypoxic microenvironment, these hypoxia-mediated changes in lipid

metabolism are especially important in order to maintain the high proliferation rate that characterizes cancer cells.

of glutamine

% \ Q,Haﬂucﬂvﬂ-barbﬁxylaﬂﬁﬁ
ﬁ

accumulation & B-oxidation

Figure 1. Reprogramming of lipid metabolism under hypoxia. Hypoxia enhances lipogenesis by HIF-dependent
modulation of proteins involved in fatty acid (FA) uptake, synthesis, storage and usage. Uptake of extracellular FA
is promoted under hypoxia by activation of the transcription factor PPARy and the increased expression of FABPs
3, 4 and 7. Endocytosis of lipoproteins is enhanced by the upregulation of LRP1 and VLDLR, while ceramide levels
are increased by upregulation of NEU3. To maintain de novo FA synthesis under hypoxia, preservation of citrate
levels and synthesis of acetyl-CoA is achieved by stimulation of reductive glutamine metabolism, mediated, at least
in part, by induction of GLS1 and proteolysis of the OGDH2 subunit of the a-ketoglutarate dehydrogenase complex
(aKGDH) by SIAH2. Adequate FA supply is further supported by activation of SREBP-1, which in turn upregulates
the expression of FASN. To avoid lipotoxicity and/or replete lipid stores, FAs are converted to neutral
triacylglycerols (TAGs), which are stored in lipid droplets (LDs). Formation of LDs under hypoxia is favored by the
upregulation of the TAG biosynthesis pathway enzymes AGPAT2 and lipin-1, and the LD membrane proteins PLIN2
and HIG2. Finally, lipid accumulation under hypoxia is additionally supported by the inhibition of 3-oxidation through
downregulation of PGC-1a, CPT1A, PGC-13, MCAD and LCAD. The proteins upregulated or activated under
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hypoxia are shown in red and the proteins downregulated or inhibited under hypoxia are shown in green. See text

for details and references.

Uptake of extracellular FA and TAG synthesis are promoted under hypoxia by transcription factor PPARYy, the gene
of which is a directly activated by HIF-1 [8. Extracellular FA influx and lipogenesis under hypoxia are also enhanced
via HIF-1-mediated induction of the expression of FABP (fatty acid binding protein) 3 and 7 in cancer cells I and
FABP4 in primary mouse hepatocytes 8. In addition, HIF-1 can promote the endocytosis of lipoproteins, by
upregulating the expression of low-density lipoprotein receptor—related protein (LRP1), the receptor that
internalizes LDL in vascular smooth muscle cells [, as well as the expression of VLDL receptor (VLDLR) in

cardiomyocytes 19,

To also maintain de novo FA synthesis under hypoxia, production of FA precursors is supported in human renal cell
carcinoma (RCC) as well as other cancer cells through HIF-dependent stimulation of reductive glutamine
metabolism 1122 This proceeds via conversion of glutamine to a-ketoglutarate and its subsequent reductive
carboxylation that produces citrate, in a reversion of the TCA cycle reaction catalyzed by IDH (isocitrate
dehydrogenase). This may be an indirect result of the HIF-mediated decrease of intracellular citrate levels (due to
upregulation of PDK1) but IDH1 or 2 may also actively contribute to the preservation of citrate levels under hypoxia
(13]14115]  Moreover, HIF-1 increases the amount of a-ketoglutarate, which can be used as substrate for citrate
synthesis and FA/lipid production, by inducing the expression of GLS1 (glutaminase 1) 18, as well as, by inducing
the E3 ubiquitin ligase SIAH2, which in turn mediates the proteolysis of the E1 subunit (OGDH2) of the a-
ketoglutarate dehydrogenase complex (aKGDH) (131, Adequate FA supply is further supported by Akt- and HIF-1-
dependent activation of SREBP-1, which in turn upregulates the expression of FASN (fatty acid synthase), an
essential lipogenic enzyme, the activity of which is correlated with cancer progression and hypoxia induced

chemoresistance 17,

As FA catabolism is impaired under hypoxia, an excess of intracellularly accumulated free FAs could cause
lipotoxicity. To avoid this, cells can convert FAs to neutral TAGs, that are stored in lipid droplets (LDs) and can
serve as the main form of energy depots R819 Two enzymes of the TAG biosynthesis pathway, AGPAT2
(acylglycerol-3-phosphate acyltransferase 2) 22 and lipin-1 [2, have been shown to mediate hypoxia-induced LD
accumulation. AGPAT2, or else LPAATP (lysophosphatidic acid acyltransferase (), catalyzes the conversion of
lysophosphatidic acid (LPA) to phosphatidic acid (PA). Interestingly AGPAT2, which is a direct target of HIF-1 29, is
one of the genes mutated in patients with congenital generalized lipodystrophy, and is upregulated in biopsies from
cancer patients. Likewise, HIF-1 also directly upregulates the expression of lipin-1, a phosphatidic acid (PA)
phosphatase that catalyzes the conversion of PA to diacylglycerol (DAG) in TAG synthesis [, AGPAT2 and lipin-1
upregulation is necessary for LD accumulation and increased viability and chemoresistance under hypoxia [22[21]
(22 The importance of the hypoxic upregulation of AGPAT2 and lipin-1 may extend beyond the formation of lipid
droplets. The products of their catalytic activity LPA and PA can either be used as precursors of TAGs or as
precursors for the synthesis of phospholipids, which are important blocks for new membrane formation 121,
Formation of lipid droplets under hypoxia is further favored by the hypoxic induction of essential constituents of LD

membranes. Stimulation of the LD coat protein adipophilin/perilipin 2 (PLIN2) expression by HIF-2 promotes RCC
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lipid storage, ER homeostasis and viability 23, and the induction of HIG2/HILPDA (Hypoxia-inducible protein
2/hypoxia-inducible lipid droplet associated) by HIF-1 increases lipid accumulation in both cancer and normal cells
(241251 Fyrthermore, HIG2 upregulation under hypoxia inhibits the adipose triglyceride lipase (ATGL) and impairs

intracellular lipolysis in various cancer cells 28],

Finally, lipid accumulation under hypoxia is additionally supported by the inhibition of enzymes involved in fatty acid
degradation. Under low oxygen concentration, fatty acid (3-oxidation is actively reduced by HIF-1- and HIF-2-
dependent downregulation of the transcriptional coactivator of (-oxidation enzyme PGC-1a (proliferator-activated
receptor-y coactivator-1a) 24 and carnitine palmitoyltransferase 1A (CPT1A), the limiting component of
mitochondrial fatty acid transport, in both hepatoma and RCC cells 2728 as well as by the HIF-1-mediated
decreased expression of MCAD and LCAD (medium- and long-chain acyl-CoA dehydrogenases) in hepatoma
cells, which depends on the hypoxic inhibition of PGC-1[3, a transcription factor involved in mitochondrial regulation
(291 As HIFs have not been shown to possess intrinsic transcription repressor activity, downregulation of these
enzymes may be mediated by the action of HIF-1 target genes that remain, in most cases, to be identified. In
summary, hypoxia overall causes enhanced lipogenesis by HIF-dependent induction of genes involved in FA
uptake, synthesis and storage (Table 1). Importantly, as discussed below, induction of these genes and

subsequent lipid accumulation are indispensable for cancer cell proliferation under hypoxia.

Table 1. Representative HIF direct or indirect target genes that mediate reprogramming of lipid metabolism under

hypoxia.
Functlonz_all Category HIF Isoform & Outcome & Experimental Evidence Ref.
IProtein Name Effect
FA & Lipoprotein
Uptake
HIF-1 Increased expression
PPARy Positive HIF-1 binds to the promoter of PPARy and activates its (6l
transcription
HIE-1 Increased expression
FABP3 Positive HIF-1a depletion inhibits the induction of FABP3 under [

hypoxia

HIF-1 Increased expression
FABP4 . HIF-1 binds to the promoter of FABP4 and activates its 8l
Positive o
transcription

Increased expression
HIF-1 P

FABP7 . HIF-1a depletion inhibits the induction of FABP7 under [
Positive .
hypoxia
HIE-1 Increased expression

LRP1 Positive HIF-1a binds to the LRP1 promoter and activates its [l
transcription
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Functional Category HIF Isoform &

IProtein Name Effect Outcome & Experimental Evidence Ref.
HIF-1 Increased expression
VDLR . HIF-1a depletion inhibits activation of VDLR promoter (101
Positive .
under hypoxia
Reductive
Carboxylation of
Glutamine
HIF-1 Increased expression
GLS1 . HIF-1a depletion inhibits the induction of GLS1 under [L6]
Positive .
hypoxia
OGDH2 HIF-1 Increased proteolysis [15]
Negative SIAH2 (a HIF-1 target) mediates proteolysis of OGDH2
Ceramide Salvage
HIF-2 Increased expression
NEU3 Positive HIF-2a binds to the NEU3 promoter and activates its (20
transcription
FA Synthesis
HIE-1 Up-regulation 7]
SREBP-1 - Inhibition of HIF-1 impairs phospho-SREBP-1 increase 27]
Positive .
under hypoxia
Increased expression
FASN HIF-1 Inhibition of HIF-1 impairs the induction of FASN under 7]
Positive hypoxia Increased binding of SREBP-1 to the FASN

promoter under hypoxia
TG Synthesis

Increased expression

AGPAT2 PI(-)”sli:tﬁe HIF-1 binds to the promoter of AGPAT2 and activates its [20]
transcription
HIE-1 Increased expression
Lipin-1 Positive HIF-1 binds to the promoter of LPIN1 and activates its 2l
transcription
LD Accumulation
HIF-2 Increased expression
PLIN2 Positive HIF-2a depletion inhibits the induction of PLIN2 under [23]
hypoxia
HIG2 HIF-1 Increased expression [24]
Positive HIF-1 binds to the promoter of HIG2 and activates its
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Functional Category HIF Isoform &

IProtein Name Effect Outcome & Experimental Evidence Ref.

transcription
B-Oxidation

Reduced expression

PGC-1a HIF-1 & HIF-2 HIF-1a or HIF-2a depletion inhibits reduction of PGC-1a [27]
Negative . .
expression under hypoxia
HIF-1 & HIF-2 Reduced expression 127]
CPT1A . HIF-1a or HIF-2a depletion inhibit reduction of CPT1A 28]
Negative . .
expression under hypoxia
Reduced expression
HIF-1 L . . [29]
MCAD . HIF-1a depletion inhibits reduction of MCAD expression
Negative .
under hypoxia
Iy

HIE-1 Reduced expression
LCAD HIF-1a depletion inhibits reduction of LCAD expression [29]

Negative under hypoxia .
“hem.
HIF-1 Reduced expression
PGC-13 Negative HIF-1a depletion inhibits reduction of PGC-1[3 expression [29]
g under hypoxia : Kaelin,

W.G., Jr. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation
in vivo. EMBO J. 2006, 25, 4650—4662.
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