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The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil,
coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer
and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of
science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the
air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based
fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance.
The applications of both homogeneous and heterogeneous processes in carbon capture and storage were
investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds.
It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special
catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of
pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic
frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis.
Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to
organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth
discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic

carbonates

cycloaddition epoxides carbon dioxide metal-organic frameworks

1. Reaction Mechanism for the Production of Cyclic
Carbonates from CO, and Epoxides

CO, conversion into cyclic carbonate compounds by cycloaddition reaction to epoxide is regarded as a method
with economic advantages to attain a CO,-neutral environment and to serve as a source for value-added

chemicals. Various researchers reviewed the mechanism for cycloadding CO, into epoxides LIZIEI4ISEIEITIE],

The process requires a robust acid catalyst to stimulate the epoxide substrate and the highly stable CO, double
bond and thermodynamically facilitates the opening of the epoxide ring via nucleophilic co-catalyst (TBABr) attack
forming an alkoxide as an intermediate, which subsequently combines with the CO,-adduct to give the desired
carbonates (Figure 1). The tetrabutylammonium bromide (TBABr) co-catalyst functions as a nucleophile to

motivate the opening of the epoxide rings. The synergistic effect between the MOF catalyst and TBABr is therefore
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crucial in attaining high catalytic performance [EI29 The cycloaddition reaction of CO, with epoxides was
extensively investigated using different potential catalysts [111[12][131[14][15][16][17][18]19][20][21][22]
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Figure 1. The general schematic reaction mechanism for CO, cycloaddition with epoxides catalyzed by a Lewis-
acid catalyst MOF and TBABr co-catalyst presence.

The best route for the mechanism was identified as the one that begins with the epoxides ring opening before the
addition of carbon dioxide. This therefore proved that the catalytic system in this process strongly depends on the
opening of the epoxide ring (22, The different method for epoxide activation by the MOF catalyst was categorized
into four bases on the features of the MOF catalyst (Figure 2) as follows: (a) metal-organic frameworks (MOFs)
with acidic secondary building units (SBUs) as the only active site, (b) MOFs with acidic linkers as metal active site
catalyst, (c) MOFs with Lewis base linkers also acting as a nucleophile and Lewis acidic components, a binary
catalytic system (d) MOFs with ionic linkers, where a single-component catalyst is used without the TBABr co-
catalyst. The homogenous co-catalyst, tetrabutylammonium bromide (TBABr) would alone promote the epoxide
ring-opening in (a and b) and the effort is reinforced in (c). The influence of Lewis-acidic component in SBUs or
metal nodes of the MOFs, however, cannot be exempted as indicated (b—d) 221,
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Figure 2. Epoxide activation modes by different MOF catalysts. (a) MOFs with acidic SBUs, (b) MOFs with acidic
linkers, (¢) MOFs with Lewis base linkers, (d) MOFs with ionic linkers. Reprinted with permission from Ref. (22,
Copyright 2019 Elsevier.

2. Metal-Organic Frameworks in CO, Cycloaddition with
Epoxides

Metal-organic frameworks (MOFs) are a class of nanomaterials containing a cluster of metals and organic ligands
(Figure 3) that attracted considerable attention because of their diverse topologies, tenability, and application in
various fields (Figure 4) [241251[26]127](28][29] These nanoporous compounds have outstanding pore sizes of about 2
to 50 nm that have exhibited encouraging applications in adsorption B[BLI32I83]341[35] ' phhotocatalysis 2817, and
heterogeneous catalysis LIB8I3A401 Different MOF materials were synthesized and employed as a catalyst in
cycloaddition reaction of CO, with epoxides and were shown to have reasonable potentiality in their applications
(41][42][43][7][7][44][45][46][47][48][490[5QI[5L][52)[53][54][55] | The studies in some recent MOF materials employed as a catalyst

in the formation of cyclic organic carbonates from CO, and epoxides are summarized in Table 1.
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Figure 3. Special features of metal-organic frameworks: (A) Typical MOFs synthesis comprising inorganic nodes
and organic linkers. (B) The accessibility of MOFs by modifying the node, linker, and content of the cauvity.

Reproduced with permission Ref. (28], Copyright 2019 Elsevier.

Recent studies of some metal-organic framework materials as a catalyst for cycloaddition reaction (Table 1)
reaffirmed that the cycloaddition reaction in most cases cannot proceed successfully without the presence of a co-
catalyst. Tetra-n-butyl ammonium bromide (TBABr) was reported as the most effective co-catalyst among the
various nucleophile components, TBAI, TBACI, and Kl, and was identified to enhance epoxide ring opening in the
reaction [42IB6IB7I58] Some certain MOFs, however, were applied without the presence of a co-catalyst (Table 1,
entry 17—-20). Where this occured, the catalytic activity of MOFs were considered as a single component and were
applied without the addition of TBABr. Nonetheless, based on the work studied, this type of reaction can only be

successful under harsh reaction conditions of temperature and pressure (Table 1, entry 17-20) 52,
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Figure 4. lllustration of MOF components, structure, characteristics, and mode of application. Reprinted with

permission from Ref. B4, Copyright 2018 Elsevier.

The addition of TBABr co-catalyst in most of the reported MOFs (Table 1, entry 1-16) further proved that the
catalytic function of MOF catalysts in cycloaddition reaction works concurrently with the co-catalyst for successful
conversion. Moreover, the catalyst/co-catalyst loading in the data entries (Table 1) was observed to be in relatively
low percentage moles. The MOF catalytic materials were found to be active and were reused for at least three
consecutive cycles in each case before losing their activity. All the reported MOFs (Table 1) were found to be
effective at moderately ambient conditions, except for entry 17—20, which occured at relatively harsh conditions
due to the absence of co-catalyst. Different epoxides such as propylene oxide, styrene oxide, and epichlorohydrin
were found to undertake CO, cycloaddition under the influence of the MOF catalyst, as shown in Table 1.

Table 1. Recent studies of MOF catalysts in CO, cycloaddition reaction to epoxides with reaction conditions.

Catalyst:

. s Isosteric
q Co- Cocatalyst Spger .. PressTemp.TimeSelectivity Yield -
Entry MOF Material Catalyst Loading (m2lg) Epoxide (atm) (°C) (h) (%) (%) 8 I(-|'2eellltVI c’I)ReusabllltyReference
(mol%) st (%
1 GCLU)(Cre el Seg TBABr  0.02:0.002 1169 ECH 10 50 6 97 95 23 4 cycles 160]
CO,)-nH,0O
2 Zn,(Py)(Atz),-DMF-2H,0 TBABr 0.1:0.1 764.5 PO 15 60 4 98 92 27.7 6 cycles 140
3 [In5(L)(OH),]-2DMF-2H,0 TBABr 0.5:0.2 1022 EBH 1 70 12 89 99 - 5 cycles 161
4 F-Mn-MOF-74 TBABr  0.1:0.031  20.83 SO 10 100 6 99 99 - 7 cycles 162)
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Catalyst:

. T Isosteric
. Co- Cocatalyst Sggr . . PressTemp.TimeSelectivity Yield -
Entry MOF Material Catalyst Loading (mZlg) Epoxide (atm) (°C) (h) (%) (%) o I(-I:.';lltw c.I)ReusablIltyReference
(mol%) st (%
5 PCN-222(Co)@MTTB TBABr  0.1:0.216 PO/ECH 1 50 20 98 >98 - 3 cycles (1
6 rho-ZMOF TBABr 0.1:1.4 871 ECH 10 40 3 98 98 - 5 cycles 541
Co-MOF-2 ) 44]
7 ([Co(BDC)(L)] 2H,0 xG}n TBABr 1.8:2.5 6.8  SO/ECH 1 40 12 99 99 35.0 6 cycles
{[Zn(H20) [48]
8 TBABr 0.25:0.232 945 PO 1 RT 48 - 76 - -
(HL)]*(DMF)2 (H20)2}n
9 MOF-5-MIX TBABr 0.5:0.5 357 ECH 12 50 6 99 98 - 5 cycles (3l
10 Ce-NU-1008 TBABr  0.02:0.002 e} 1 RT 20 95 - 3 cycles 64]
Co-MOF-2 . [65]
11 {ICoBDC)(L)]-2H,0-xG}n Kl 5.0:0.2 6.8 SEO 1 40 8 99 99 35.0 6 cycles
{[NigHL(u3-OH) ) i i [66]
12 (H20)2]-3(H>0)-DMAJn TBABr  0.025:1.5 7435 ECH 10 100 6 >99 5 cycles
13 [(Cup, BPDSDC-4DMF)-2DMF]n  TBABr  0.05:0.1 - PO 25 80 5 98 99 - 4 cycles 67
14 {[Cos(OM)2(H20)a (CP)SINO3) 1, 0.1:2 873 PO 1 40 48 97 97 32 4 cycles 168]
(DMF)13}
15 INDCPN-CI TBABr  0.05:5.00 997 Sle} 1 80 24 98 93 30 5 cycles (0]
16 Ce-NU-1008 TBABr  0.002:0.02 910 e} 1 RT 20 95 (64
17 MOF-5@Imidazolium iodide - - 277.9 SO 10 110 8 - 92 - 4 cycles (691
18 [(CH3)2NH2][M(COOH)s3] - 13.1 13.11 PO 20 120 6 100 98 - 3 cycles ol
Im-MnF 71
19 - - 81.57 ECH 15 100 6 99 95 - - .
[C3H5N2][Mn(COOH)3] rganic
20 Pt/Mg-MOF-74 - 513 PO 175 150 4 77 44 - 3 cycles 2 rganic

Carbonates. Front. Energy Res. 2015, 3, 1-10.

2. Pentyala, V.; Davydovskaya, P.; Pohle, R.; Urban, G.; Yurchenko, O. Mg-MOF74 and Co-MOF74
as Sensing Layers for CO2 Detection. Procedia Eng. 2014, 87, 1071-1074.

3. Wu, Y.; Song, X.; Li, S.; Zhang, J.; Yang, X.; Shen, P.; Gao, L.; Wei, R.; Zhang, J.; Xiao, G. 3D-
monoclinic M—-BTC MOF (M = Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2
into cyclic carbonates. J. Ind. Eng. Chem. 2018, 58, 296—-303.

4. Lu, B.-B.; Jiang, W.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Resorcin arene-Based Microporous Metal—
Organic Framework as an Efficient Catalyst for CO2 Cycloaddition with Epoxides and Highly
Selective Luminescent Sensing of Cr2072-. ACS Appl. Mater. Interfaces 2017, 9, 39441-39449.

5. Lin, K.-S.; Adhikari, A.K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Synthesis and characterization of

NotROFAYRet R Tids Metab et RBSRskmiRE BYARRERN storage. Int. J. Hydrogen Energy 2012,
37, 13865-13871.

b 3vMils- 101 Baseth MOFSin @8 Cycleaddition- withPEpoxXidess
highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts.

MILAKH! iseie i/ the pepezietiv iepos7d MOF materials with a high potential catalytic activity for the conversion of

COs to_cyclic carbonates. This was ascribed to its possession of Lewis-acid sites due to Cr?* present at the metal

7 Raai , J.W.; Pozo-Gonzalo, C.; Kong, L.; Schitz, J.; Hill, M.; Dumée, L.F. Metal Organic _

center and sfructural flexibility,” which alldws its modifications by substituting different functional groups in the
Framework Based Catalysts for CO2 Conversion. Mater."Horizons 2017, 4, 345-361.
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