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The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal,

oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and

consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and

academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which

include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these

sources were reported to have a relatively high cost of production and maintenance. The applications of both

homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the

focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo

cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used

as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts

studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special

features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in

transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials

and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to

organic carbonates
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1. Reaction Mechanism for the Production of Cyclic Carbonates from
CO  and Epoxides

CO  conversion into cyclic carbonate compounds by cycloaddition reaction to epoxide is regarded as a method with

economic advantages to attain a CO -neutral environment and to serve as a source for value-added chemicals. Various

researchers reviewed the mechanism for cycloadding CO  into epoxides .

The process requires a robust acid catalyst to stimulate the epoxide substrate and the highly stable CO  double bond and

thermodynamically facilitates the opening of the epoxide ring via nucleophilic co-catalyst (TBABr) attack forming an

alkoxide as an intermediate, which subsequently combines with the CO -adduct to give the desired carbonates (Figure
1). The tetrabutylammonium bromide (TBABr) co-catalyst functions as a nucleophile to motivate the opening of the

epoxide rings. The synergistic effect between the MOF catalyst and TBABr is therefore crucial in attaining high catalytic

performance . The cycloaddition reaction of CO  with epoxides was extensively investigated using different potential

catalysts .
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Figure 1. The general schematic reaction mechanism for CO  cycloaddition with epoxides catalyzed by a Lewis-acid

catalyst MOF and TBABr co-catalyst presence.

The best route for the mechanism was identified as the one that begins with the epoxides ring opening before the addition

of carbon dioxide. This therefore proved that the catalytic system in this process strongly depends on the opening of the

epoxide ring . The different method for epoxide activation by the MOF catalyst was categorized into four bases on the

features of the MOF catalyst (Figure 2) as follows: (a) metal-organic frameworks (MOFs) with acidic secondary building

units (SBUs) as the only active site, (b) MOFs with acidic linkers as metal active site catalyst, (c) MOFs with Lewis base

linkers also acting as a nucleophile and Lewis acidic components, a binary catalytic system (d) MOFs with ionic linkers,

where a single-component catalyst is used without the TBABr co-catalyst. The homogenous co-catalyst,

tetrabutylammonium bromide (TBABr) would alone promote the epoxide ring-opening in (a and b) and the effort is

reinforced in (c). The influence of Lewis-acidic component in SBUs or metal nodes of the MOFs, however, cannot be

exempted as indicated (b–d) .

Figure 2. Epoxide activation modes by different MOF catalysts. (a) MOFs with acidic SBUs, (b) MOFs with acidic linkers,

(c) MOFs with Lewis base linkers, (d) MOFs with ionic linkers. Reprinted with permission from Ref. . Copyright 2019

Elsevier.

2. Metal-Organic Frameworks in CO  Cycloaddition with Epoxides

Metal-organic frameworks (MOFs) are a class of nanomaterials containing a cluster of metals and organic ligands (Figure
3) that attracted considerable attention because of their diverse topologies, tenability, and application in various fields

(Figure 4) . These nanoporous compounds have outstanding pore sizes of about 2 to 50 nm that have

exhibited encouraging applications in adsorption , photocatalysis , and heterogeneous catalysis 

. Different MOF materials were synthesized and employed as a catalyst in cycloaddition reaction of CO  with

epoxides and were shown to have reasonable potentiality in their applications 

. The studies in some recent MOF materials employed as a catalyst in the formation of cyclic organic carbonates from

CO  and epoxides are summarized in Table 1.
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Figure 3. Special features of metal-organic frameworks: (A) Typical MOFs synthesis comprising inorganic nodes and

organic linkers. (B) The accessibility of MOFs by modifying the node, linker, and content of the cavity. Reproduced with

permission Ref. . Copyright 2019 Elsevier.

Recent studies of some metal-organic framework materials as a catalyst for cycloaddition reaction (Table 1) reaffirmed

that the cycloaddition reaction in most cases cannot proceed successfully without the presence of a co-catalyst. Tetra-n-

butyl ammonium bromide (TBABr) was reported as the most effective co-catalyst among the various nucleophile

components, TBAI, TBACl, and KI, and was identified to enhance epoxide ring opening in the reaction . Some

certain MOFs, however, were applied without the presence of a co-catalyst (Table 1, entry 17–20). Where this occured,

the catalytic activity of MOFs were considered as a single component and were applied without the addition of TBABr.

Nonetheless, based on the work studied, this type of reaction can only be successful under harsh reaction conditions of

temperature and pressure (Table 1, entry 17–20) .

Figure 4. Illustration of MOF components, structure, characteristics, and mode of application. Reprinted with permission

from Ref. . Copyright 2018 Elsevier.

The addition of TBABr co-catalyst in most of the reported MOFs (Table 1, entry 1–16) further proved that the catalytic

function of MOF catalysts in cycloaddition reaction works concurrently with the co-catalyst for successful conversion.

Moreover, the catalyst/co-catalyst loading in the data entries (Table 1) was observed to be in relatively low percentage

moles. The MOF catalytic materials were found to be active and were reused for at least three consecutive cycles in each

case before losing their activity. All the reported MOFs (Table 1) were found to be effective at moderately ambient

conditions, except for entry 17–20, which occured at relatively harsh conditions due to the absence of co-catalyst.

Different epoxides such as propylene oxide, styrene oxide, and epichlorohydrin were found to undertake

CO  cycloaddition under the influence of the MOF catalyst, as shown in Table 1.

Table 1. Recent studies of MOF catalysts in CO  cycloaddition reaction to epoxides with reaction conditions.

Entry MOF Material Co-
Catalyst

Catalyst:
Cocatalyst
Loading
(mol%)

S
(m /g) Epoxide Press

(atm)
Temp.
(°C)

Time
(h)

Selectivity
(%)

Yield
(%)

Isosteric
Heat
Q  (Kj/Mol)

R

1 Al(OH) (O C–CH=CH–
CO )·nH O TBABr 0.02:0.002 1169 ECH 10 50 6 97 95 23

2 Zn (Py)(Atz) ·DMF·2H O TBABr 0.1:0.1 764.5 PO 15 60 4 98 92 27.7

[28]

[45][56][57][58]

[59]

[57]

2

2

BET
2

st

2

2 2

2 2 2



Entry MOF Material Co-
Catalyst

Catalyst:
Cocatalyst
Loading
(mol%)

S
(m /g) Epoxide Press

(atm)
Temp.
(°C)

Time
(h)

Selectivity
(%)

Yield
(%)

Isosteric
Heat
Q  (Kj/Mol)

R

3 [In (L)(OH) ]·2DMF·2H O TBABr 0.5:0.2 1022 EBH 1 70 12 89 99 -

4 F-Mn-MOF-74 TBABr 0.1:0.031 20.83 SO 10 100 6 99 99 -

5 PCN-222(Co)@MTTB TBABr 0.1:0.216  PO/ECH 1 50 20 98 >98 -

6 rho-ZMOF TBABr 0.1:1.4 871 ECH 10 40 3 98 98 -

7 Co-MOF-2
{[Co(BDC)(L)]·2H O.xG}n TBABr 1.8:2.5 6.8 SO/ECH 1 40 12 99 99 35.0

8 {[Zn(H O)
(HL)]⋅(DMF)  (H O) }n TBABr 0.25:0.232 945 PO 1 RT 48 - 76 -

9 MOF-5-MIX TBABr 0.5:0.5 357 ECH 12 50 6 99 98 -

10 Ce-NU-1008 TBABr 0.02:0.002  SO 1 RT 20 95  -

11 Co-MOF-2
{[Co(BDC)(L)]·2H O·xG}n KI 5.0:0.2 6.8 SEO 1 40 8 99 99 35.0

12 {[Ni HL(μ3-OH)
(H O) ]·3(H O)·DMA}n TBABr 0.025:1.5 743.5 ECH 10 100 6 - >99 -

13 [(Cu  BPDSDC·4DMF)·2DMF]n TBABr 0.05:0.1 - PO 25 80 5 98 99 -

14 {[Co (OH) (H O)  (cpt) ](NO )
(DMF) } TBABr 0.1:2 873 PO 1 40 48 97 97 32

15 InDCPN-Cl TBABr 0.05:5.00 997 SO 1 80 24 98 93 30

16 Ce-NU-1008 TBABr 0.002:0.02 910 SO 1 RT 20 95  -

17 MOF-5@Imidazolium iodide - - 277.9 SO 10 110 8 - 92 -

18 [(CH ) NH ][M(COOH) ] - 13.1 13.11 PO 20 120 6 100 98 -

19 Im-MnF
[C H N ][Mn(COOH) ] - - 81.57 ECH 15 100 6 99 95 -

20 Pt/Mg-MOF-74 -  513 PO 17.5 150 4 77 44 -

Note: All pressure units are converted to the approximate atm value.

3. MIL-101 Based MOFs in CO  Cycloaddition with Epoxides

MIL-101 is one of the repeatedly reported MOF materials with a high potential catalytic activity for the conversion of

CO  to cyclic carbonates. This was ascribed to its possession of Lewis-acid sites due to Cr , present at the metal center

 and structural flexibility, which allows its modifications by substituting different functional groups in the organic ligand

but maintains the backbone structures. The synthesis and structural elucidation of MIL-101(Cr) was reported by different

researchers .

MIL-101 is a three-dimensional structure based on chromium terephthalate that was first synthesized by Fėrey et al. ,

having the empirical formula {Cr (OH)(H O) O[(O C)C H (CO ] ·nH O} with the given name MIL: (Materials Institute

Lavosier) in 2005 (Figure 5). The material has a very stable structure with excellent water resistibility even under acidic

conditions and was proven to have thermal stability up to 300 °C under air. The MIL-101(Cr) structure exhibited a large

surface area of approximately 4100 m  g  and contained two different types of cages with diameters of 29 and 34 Å,

which had pore openings of 12 and 16 Å, respectively (Figure 6) . Those special properties made MIL-101

possess superior catalytic activity, which was applied in different applications . The unique porosity of

three-dimensional frameworks forms exclusive channels with large surface areas, which can enhance CO  by providing

sufficient reaction spaces. It also allows the encapsulation of other catalytic active materials into the large pores to

improve the catalytic activity of the MIL-101 by forming a composites with enhanced activity for application in various

fields . The MOF was also applied as a catalyst in cycloaddition reaction of CO  with epoxides as a single

component catalyst without the addition of co-catalyst .
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Figure 5. Synthesis and structural elucidation of MIL-101(Cr): (a) The formation of the hybrid super tetrahedron by the

cluster chromium metal building unit and the bdc ligand; (b) Small pentagonal and larger hexagonal window (c) The two

mesoporous cages; (d) 3D schematic representation of the MTN zeotype architecture (small cages are highlighted in

green and large one is highlighted in red); (e) Morphology, showing clear octahedral shape with an average crystal size of

~1.0 μm .

Figure 6. Trinuclear chromium building units and the bridging bdc ligands forming pentagonal and hexagonal rings (a)

assembled into mesoporous cages (b) and mesoporous cages of yellow spheres with diameters of 29 or 34 Å,

respectively. Reprinted with permission from Ref. . Copyright 2016 Elsevier.

4. HKUST-1 for CO  Cycloaddition with Epoxides

Another group of porous material that attracted the attention of researchers as a potential catalyst for CO  cycloaddition

with epoxides is HKUST-1 (Hong Kong University of Science and Technology) and also referred as MOF-199, a Cu-based

of 1,3,5-benzenetricarboxylate (BTC) ligand. HKUST-1 was first synthesized in 1999 using copper(II) ion (Cu ) as metal

center and BTC ligand to give a light blue powder (Figure 7) , it was also reported using other metals with +2

oxidation state such as Cr  , Ni  , Zn  , Fe , Co  , and as bimetallic with two different metals at the

center while maintaining the structure . HKUST-1 material has a molecular formula [Cu (BTC) (H O) ] and

morphological structure with a sound level of thermal stability (Figure 8) and a capacity for chemical functionalization of

the channel linings with face-centered-cubic crystals comprising a 3D intersecting system with big square-shaped pores (9

Å by 9 Å) of a continuous network through Cu(OAc)  paddle wheel SBU, as in Figure 9. The open metal sites in the

HKUST-1 structure provides the basis for CO  adsorption property . The large porous structure can also be used to

create effective heterogeneous catalysts as templates to construct dynamic heterogeneous system by encapsulation of

other nanomaterials to form composites. The resultant composite material can preserve the original properties of the

HKUST-1, while gaining additional unique properties that can be applied in different applications .
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Figure 7. Schematic Procedure of HKUST-1 synthesis and structural elucidation. Reprinted with permission from Ref. .

Copyright 2019 Elsevier.

Figure 8. FESEM micrographs of HKUST-1 in different scales: (a) 2 μm, (b) 500 μm. Reprinted with permission from Ref.

. Copyright 2019 Elsevier.

Figure 9. (A) Structure of HKUST-1. (B) Paddle-wheel secondary building unit (SBU). Reprinted with permission from

Ref. . Copyright 2019 Elsevier.

Abbreviations

MOFs Metal-organic frameworks

TBABr Tetrabutyl ammonium bromide

SBU Secondary Building Unit

SO Styrene Oxide

PO Propylene oxide

ECH Epichlorohydrin

EBH Epibromohydrin

SEO Spiro-Epoxy Oxindole

BTC 1,3,5-benzenetricarboxylate

HKUST Hong Kong University of Science and Technology

RT Room temperature

KI potassium iodide

Å Aperture
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