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The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil,

coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer

and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of

science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the

air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based

fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance.

The applications of both homogeneous and heterogeneous processes in carbon capture and storage were

investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds.

It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special

catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of

pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic

frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis.

Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to

organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth

discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic

carbonates

cycloaddition  epoxides  carbon dioxide  metal-organic frameworks

1. Reaction Mechanism for the Production of Cyclic
Carbonates from CO  and Epoxides

CO  conversion into cyclic carbonate compounds by cycloaddition reaction to epoxide is regarded as a method

with economic advantages to attain a CO -neutral environment and to serve as a source for value-added

chemicals. Various researchers reviewed the mechanism for cycloadding CO  into epoxides .

The process requires a robust acid catalyst to stimulate the epoxide substrate and the highly stable CO  double

bond and thermodynamically facilitates the opening of the epoxide ring via nucleophilic co-catalyst (TBABr) attack

forming an alkoxide as an intermediate, which subsequently combines with the CO -adduct to give the desired

carbonates (Figure 1). The tetrabutylammonium bromide (TBABr) co-catalyst functions as a nucleophile to

motivate the opening of the epoxide rings. The synergistic effect between the MOF catalyst and TBABr is therefore
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crucial in attaining high catalytic performance . The cycloaddition reaction of CO   with epoxides was

extensively investigated using different potential catalysts .

Figure 1. The general schematic reaction mechanism for CO  cycloaddition with epoxides catalyzed by a Lewis-

acid catalyst MOF and TBABr co-catalyst presence.

The best route for the mechanism was identified as the one that begins with the epoxides ring opening before the

addition of carbon dioxide. This therefore proved that the catalytic system in this process strongly depends on the

opening of the epoxide ring . The different method for epoxide activation by the MOF catalyst was categorized

into four bases on the features of the MOF catalyst (Figure 2) as follows: (a) metal-organic frameworks (MOFs)

with acidic secondary building units (SBUs) as the only active site, (b) MOFs with acidic linkers as metal active site

catalyst, (c) MOFs with Lewis base linkers also acting as a nucleophile and Lewis acidic components, a binary

catalytic system (d) MOFs with ionic linkers, where a single-component catalyst is used without the TBABr co-

catalyst. The homogenous co-catalyst, tetrabutylammonium bromide (TBABr) would alone promote the epoxide

ring-opening in (a and b) and the effort is reinforced in (c). The influence of Lewis-acidic component in SBUs or

metal nodes of the MOFs, however, cannot be exempted as indicated (b–d) .
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Figure 2. Epoxide activation modes by different MOF catalysts. (a) MOFs with acidic SBUs, (b) MOFs with acidic

linkers, (c) MOFs with Lewis base linkers, (d) MOFs with ionic linkers. Reprinted with permission from Ref. .

Copyright 2019 Elsevier.

2. Metal-Organic Frameworks in CO  Cycloaddition with
Epoxides

Metal-organic frameworks (MOFs) are a class of nanomaterials containing a cluster of metals and organic ligands

(Figure 3) that attracted considerable attention because of their diverse topologies, tenability, and application in

various fields (Figure 4) . These nanoporous compounds have outstanding pore sizes of about 2

to 50 nm that have exhibited encouraging applications in adsorption , photocatalysis , and

heterogeneous catalysis . Different MOF materials were synthesized and employed as a catalyst in

cycloaddition reaction of CO  with epoxides and were shown to have reasonable potentiality in their applications

. The studies in some recent MOF materials employed as a catalyst

in the formation of cyclic organic carbonates from CO  and epoxides are summarized in Table 1.
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Figure 3. Special features of metal-organic frameworks: (A) Typical MOFs synthesis comprising inorganic nodes

and organic linkers. (B) The accessibility of MOFs by modifying the node, linker, and content of the cavity.

Reproduced with permission Ref. . Copyright 2019 Elsevier.

Recent studies of some metal-organic framework materials as a catalyst for cycloaddition reaction (Table 1)

reaffirmed that the cycloaddition reaction in most cases cannot proceed successfully without the presence of a co-

catalyst. Tetra-n-butyl ammonium bromide (TBABr) was reported as the most effective co-catalyst among the

various nucleophile components, TBAI, TBACl, and KI, and was identified to enhance epoxide ring opening in the

reaction . Some certain MOFs, however, were applied without the presence of a co-catalyst (Table 1,

entry 17–20). Where this occured, the catalytic activity of MOFs were considered as a single component and were

applied without the addition of TBABr. Nonetheless, based on the work studied, this type of reaction can only be

successful under harsh reaction conditions of temperature and pressure (Table 1, entry 17–20) .
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Figure 4.  Illustration of MOF components, structure, characteristics, and mode of application. Reprinted with

permission from Ref. . Copyright 2018 Elsevier.

The addition of TBABr co-catalyst in most of the reported MOFs (Table 1, entry 1–16) further proved that the

catalytic function of MOF catalysts in cycloaddition reaction works concurrently with the co-catalyst for successful

conversion. Moreover, the catalyst/co-catalyst loading in the data entries (Table 1) was observed to be in relatively

low percentage moles. The MOF catalytic materials were found to be active and were reused for at least three

consecutive cycles in each case before losing their activity. All the reported MOFs (Table 1) were found to be

effective at moderately ambient conditions, except for entry 17–20, which occured at relatively harsh conditions

due to the absence of co-catalyst. Different epoxides such as propylene oxide, styrene oxide, and epichlorohydrin

were found to undertake CO  cycloaddition under the influence of the MOF catalyst, as shown in Table 1.

Table 1. Recent studies of MOF catalysts in CO  cycloaddition reaction to epoxides with reaction conditions.
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Entry MOF Material Co-
Catalyst

Catalyst:
Cocatalyst

Loading
(mol%)

S
(m /g) Epoxide Press

(atm)
Temp.
(°C)

Time
(h)

Selectivity
(%)

Yield
(%)

Isosteric
Heat

Q  (Kj/Mol)
ReusabilityReference

1
Al(OH) (O C–CH=CH–

CO )∙nH O
TBABr 0.02:0.002 1169 ECH 10 50 6 97 95 23 4 cycles

2 Zn (Py)(Atz) ∙DMF∙2H O TBABr 0.1:0.1 764.5 PO 15 60 4 98 92 27.7 6 cycles

3 [In (L)(OH) ]·2DMF·2H O TBABr 0.5:0.2 1022 EBH 1 70 12 89 99 - 5 cycles

4 F-Mn-MOF-74 TBABr 0.1:0.031 20.83 SO 10 100 6 99 99 - 7 cycles
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Note: All pressure units are converted to the approximate atm value.

3. MIL-101 Based MOFs in CO  Cycloaddition with Epoxides

MIL-101 is one of the repeatedly reported MOF materials with a high potential catalytic activity for the conversion of

CO  to cyclic carbonates. This was ascribed to its possession of Lewis-acid sites due to Cr , present at the metal

center  and structural flexibility, which allows its modifications by substituting different functional groups in the
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organic ligand but maintains the backbone structures. The synthesis and structural elucidation of MIL-101(Cr) was

reported by different researchers .

MIL-101 is a three-dimensional structure based on chromium terephthalate that was first synthesized by Fėrey et

al. , having the empirical formula {Cr (OH)(H O) O[(O C)C H (CO ] ∙nH O} with the given name MIL: (Materials

Institute Lavosier) in 2005 (Figure 5). The material has a very stable structure with excellent water resistibility even

under acidic conditions and was proven to have thermal stability up to 300 °C under air. The MIL-101(Cr) structure

exhibited a large surface area of approximately 4100 m   g   and contained two different types of cages with

diameters of 29 and 34 Å, which had pore openings of 12 and 16 Å, respectively (Figure 6) . Those

special properties made MIL-101 possess superior catalytic activity, which was applied in different applications 

. The unique porosity of three-dimensional frameworks forms exclusive channels with large

surface areas, which can enhance CO  by providing sufficient reaction spaces. It also allows the encapsulation of

other catalytic active materials into the large pores to improve the catalytic activity of the MIL-101 by forming a

composites with enhanced activity for application in various fields . The MOF was also applied as a catalyst in

cycloaddition reaction of CO  with epoxides as a single component catalyst without the addition of co-catalyst .

Figure 5. Synthesis and structural elucidation of MIL-101(Cr): (a) The formation of the hybrid super tetrahedron by

the cluster chromium metal building unit and the bdc ligand; (b) Small pentagonal and larger hexagonal window (c)

The two mesoporous cages; (d) 3D schematic representation of the MTN zeotype architecture (small cages are

highlighted in green and large one is highlighted in red); (e) Morphology, showing clear octahedral shape with an

average crystal size of ~1.0 μm .
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Figure 6. Trinuclear chromium building units and the bridging bdc ligands forming pentagonal and hexagonal rings

(a) assembled into mesoporous cages (b) and mesoporous cages of yellow spheres with diameters of 29 or 34 Å,

respectively. Reprinted with permission from Ref. . Copyright 2016 Elsevier.

4. HKUST-1 for CO  Cycloaddition with Epoxides

Another group of porous material that attracted the attention of researchers as a potential catalyst for

CO  cycloaddition with epoxides is HKUST-1 (Hong Kong University of Science and Technology) and also referred

as MOF-199, a Cu-based of 1,3,5-benzenetricarboxylate (BTC) ligand. HKUST-1 was first synthesized in 1999

using copper(II) ion (Cu ) as metal center and BTC ligand to give a light blue powder (Figure 7) , it was

also reported using other metals with +2 oxidation state such as Cr   , Ni   , Zn   , Fe , Co   , and

as bimetallic with two different metals at the center while maintaining the structure . HKUST-1 material has a

molecular formula [Cu (BTC) (H O) ] and morphological structure with a sound level of thermal stability (Figure 8)

and a capacity for chemical functionalization of the channel linings with face-centered-cubic crystals comprising a

3D intersecting system with big square-shaped pores (9 Å by 9 Å) of a continuous network through

Cu(OAc)  paddle wheel SBU, as in Figure 9. The open metal sites in the HKUST-1 structure provides the basis for

CO  adsorption property . The large porous structure can also be used to create effective heterogeneous

catalysts as templates to construct dynamic heterogeneous system by encapsulation of other nanomaterials to

form composites. The resultant composite material can preserve the original properties of the HKUST-1, while

gaining additional unique properties that can be applied in different applications .

19. Kiatkittipong, K.; Shukri, M.A.A.M.; Kiatkittipong, W.; Lim, J.W.; Show, P.L.; Lam, M.K.;
Assabumrungrat, S. Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide—A
Mini Review. Processes 2020, 8, 548.

20. Calabrese, C.; Giacalone, F.; Aprile, C. Hybrid Catalysts for CO2 Conversion into Cyclic
Carbonates. Catalysts 2019, 9, 325.

21. Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D’Arienzo, M.;
Evangelisti, C.; Marelli, M.; Moret, M.; et al. Step-by-Step Growth of HKUST-1 on Functionalized
TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts 2018, 8,
353.

22. Liang, J.; Huang, Y.-B.; Cao, R. Metal–organic frameworks and porous organic polymers for
sustainable fixation of carbon dioxide into cyclic carbonates. Coord. Chem. Rev. 2019, 378, 32–
65.

23. Shaikh, R.R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure,
Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2018, 8, 419–450.

24. Rowsell, J.L.C.; Yaghi, O.M. Effects of Functionalization, Catenation, and Variation of the Metal
Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of
Metal−Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

25. Chen, Y.; Huang, X.; Feng, X.; Li, J.; Huang, Y.; Zhao, J.; Guo, Y.; Dong, X.; Han, R.; Qi, P.; et al.
Facile fabrication of magnetically recyclable metal–organic framework nanocomposites for highly
efficient and selective catalytic oxidation of benzylic C–H bonds. Chem. Commun. 2014, 50,
8374–8377.

26. Yang, Y.; Yao, H.-F.; Xi, F.-G.; Gao, E.-Q. Amino-functionalized Zr(IV) metal–organic framework as
bifunctional acid–base catalyst for Knoevenagel condensation. J. Mol. Catal. A Chem. 2014, 390,
198–205.

27. Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on
metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–
425.

28. Wasson, M.C.; Buru, C.T.; Chen, Z.; Islamoglu, T.; Farha, O.K. Metal–organic frameworks A
tunable platform to access single-site heterogeneous catalysts. Appl. Catal. A Gen. 2019, 586,
117214.

29. Du, P.D.; Thanh, H.T.M.; To, T.C.; Thang, H.S.; Tinh, M.X.; Tuyen, T.N.; Hoa, T.T.; Khieu, D.Q.
Metal-Organic Framework MIL-101: Synthesis and Photocatalytic Degradation of Remazol Black
B Dye. J. Nanomater. 2019, 2019, 6061275.

30. Uba, Z.Z.; Hana, N.; Abu, H.; Soraya, N.; Jumbri, K.; Ain, N.; Abdullah, F.; Abdul, E.; Saad, B.
Adsorption of Chrysene in Aqueous Solution onto MIL-88(Fe) and NH2-MIL-88(Fe) Metal-Organic

[83]

2

2

2+ [38][91][92]

2+ [93] 2+ [94] 2+ [95] 2+ 2+ [96][97]

[98]

3 2 2 3

4

2
[99][100]

[25][101][102][103][104]



Metal-Organic Frameworks in CO2 Cycloaddition with Epoxides | Encyclopedia.pub

https://encyclopedia.pub/entry/16191 9/15

Figure 7. Schematic Procedure of HKUST-1 synthesis and structural elucidation. Reprinted with permission from

Ref. . Copyright 2019 Elsevier.

Figure 8. FESEM micrographs of HKUST-1 in different scales: (a) 2 μm, (b) 500 μm. Reprinted with permission

from Ref. . Copyright 2019 Elsevier.

Figure 9.  (A) Structure of HKUST-1. (B) Paddle-wheel secondary building unit (SBU). Reprinted with permission

from Ref. . Copyright 2019 Elsevier.
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