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Brown algae have been part of the human diet for hundreds of years, however, in recent years, commercial and scientific

interest in brown algae has increased due to the growing demand for healthier diet by the world population. Brown algae

and its metabolites, such as carotenoids, polysaccharides, phlorotannins, and proteins, have been associated with

multiple beneficial health effects for different diseases, such as cardiovascular diseases, one of the main causes of death

in Europe.
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1. Introduction

Seaweeds are macroalgae used in different sectors, such as agricultural, horticultural, cosmetics, and food industries. It

has been recognized that the novel and potentially bioactive components that algae present make them a good source of

healthy food  World seaweed production doubled between 2005 and 2015. Globally, in 2016, seaweed products were

valued at USD 10.6 million, and it is estimated that in 2025 the value of global seaweed products will reach USD 26

million . Asia and the Pacific region dominate 60% of the world algae market, followed by Europe and the Americas .

Seaweeds have been used as part of the human diet for thousands of years. Archaeological evidence shows that in Chile

it has been used for the last 14,000 years , and in Japan and China, there are written records describing the use of

seaweed that date back over 2000 years . Nowadays, in Europe, seaweed consumption is increasing, not only

because people are becoming interested in the uses of natural products, but also because it is seen as a healthy and

nutritious “superfood”, which is sold preserved dry, fresh, frozen, canned, or salted . Algae are used both as a food

supplement and as an addition to functional food. Meat products, cereal-based products, and fermented functional foods,

such as cheeses, are the main products in the market supplemented with algae . Statistics from the 2012 global harvest

demonstrated that 38% of the 23.8 million seaweed harvest was used for human consumption, without counting the

consumption of hydrocolloids derived from algae as agars, alginates, and carrageenans . Currently, more than 10,000

species of algae are known, but only about 200 species are consumed worldwide, with the brown algae species being the

most consumed, followed by red algae species and then the green algae species . Despite the considerable number of

brown algae species consumed worldwide, under the European regulation there are only about 23 brown seaweed

species authorized for food applications.

Table 1. List of brown algae species for human food applications in Europe under the regulation (UE) 2015/2283 .

Brown Algae Species

Ascophyllum nodosum

Alaria esculenta

Eisenia bicyclis

Fucus vesiculosus

Fucus serratus

Fucus spiralis

Himanthalia elongata

Laminaria digitata

Saccharina japonica

Saccharina latissima

Saccharina longicruris
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Brown Algae Species

Sargassum fusiforme

Undaria pinnatifida

2. Hypercholesterolemia and the Actual Treatment

Cholesterol is an essential factor for cell homeostasis, having an important role in the synthesis of hormones and bile

acids and in membrane structures . Whole-body cholesterol homeostasis is a tightly regulated process that involves

de novo biosynthesis, dietary cholesterol absorption, and biliary clearance and excretion . An imbalance of these

processes may lead to hypercholesterolemia, which is characterized by high levels of total cholesterol (Tc), low-density

lipoprotein cholesterol (LDL-c), or triglycerides (TGs), and/or a decrease in high-density lipoprotein cholesterol (HDL-c）
.

Excess cholesterol in tissues is removed by a pathway known as reverse cholesterol transport (RCT) that transports

cholesterol from non-hepatic tissues to the liver for metabolism and bile excretion . The principal lipoprotein involved in

the cholesterol efflux from peripheral tissues is the HDL-c and its apolipoprotein (apo) A-I, the major protein in HDL

particles . Moreover, there are also three important membrane cholesterol transporters that have a major role in the

RCT process: ATP-binding cassette (ABC) transporters A1 (ABCA1) and G1 (ABCG1) and scavenger receptor class B

type I (SR-B1) . The ABCA1 transports the cholesterol to apoA-I, leading to the formation of the HDL-c particles

(Figure 1). The HDL particles interact with ABCG1 to incorporate more cholesterol, which is then esterified by the enzyme

lecithin-cholesterol acyl transferase (LCAT) (Figure 1) .

Figure 1.  Schematic diagram of reverse cholesterol transport (RCT), intestinal cholesterol absorption, and the

mechanisms of action of ezetimibe, statins, and brown algae compounds on cholesterol metabolism (polysaccharides,

fucoxanthin, fucoidan, alginic acid, laminarin, and phlorotannins). HMG-CoA: 3-hydroxy-3-methyl-glutaryl coenzyme A;

NPC1L1: Niemann–Pick C1-like 1 protein; ABCA1: ATP-binding cassette transporter A1; ABCG5/8: ATP-binding cassette

transporters G5/8; SR-BI: scavenger receptor class B type I; ACAT: acyl-CoA:cholesterol acyltransferase; apoA-I:

apolipoprotein A-I; HDL: high-density lipoprotein; VLDL: very low density lipoprotein; LDL: low-density lipoprotein; LCAT:

lecithin-cholesterol acyl transferase; TG: triglyceride; FC: free cholesterol; CE: esterified cholesterol. The figure was

designed using images from Servier Medical Art Commons Attribution 3.0 Unported License. (http://smart.servier.com).

Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

Next, the cholesterol is delivered to the liver by a direct or an indirect pathway. In the direct pathway, HDL binds with high

affinity to SR-B1 in the liver and transfers its cholesterol content (Figure 1). By the indirect pathway, the esterified

cholesterol (CE) is transferred to apolipoproteins B-100 (apoB-100), to very low density lipoprotein (VLDL), or especially

to LDL, in exchange for TG molecules (Figure 1) . After this process, HDL-c molecules can re-enter the RCT cycle.

Based on this knowledge, it has been proven that the plasma concentration levels of the HDL-c are inversely related to

the risk of CHD . The final step in RCT is the most important mechanism for cholesterol body elimination, since

the hepatic cholesterol, free or converted into bile acids, is secreted in the bile and then eliminated via the feces (Figure 1)
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Whole-body cholesterol homeostasis is largely affected by the intestinal cholesterol absorption once its absorption

percentage averages 56% . Niemann–Pick C1-like 1 protein (NPC1L1) is the key player in dietary cholesterol intake,

transporting dietary and bile cholesterol from the intestinal lumen to the enterocyte. Afterwards, the cholesterol can be

esterified by acyl-CoA:cholesterol acyltransferase (ACAT), assembled into chylomicrons, and exported into circulation

(Figure 1) . Likewise, the unesterified cholesterol can also be exported to the blood stream through the protein

transporter ABCA1, localized in the basolateral membrane of the enterocyte (Figure 1) . The unesterified cholesterol is

also effluxed back into the intestinal lumen through the transporter proteins localized in the apical membrane of the

enterocytes, ABCG5/ABCG8 (Figure 1) .

The first approach to preventing cardiovascular disease and lowering cholesterol levels is lifestyle changes together with

drug-based therapy . The two main lipid-lowering drugs used are statins and ezetimibe, which act according to different

mechanisms, via the de novo cholesterol synthesis and via the dietary cholesterol absorption, respectively .

Statins are the first-line drugs for lowering cholesterol levels, and there are currently seven different types approved in the

United States: simvastatin, atorvastatin, lovastatin, pravastatin, fluvastatin, rosuvastatin, and pitavastatin. Statins bind to

the active site of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol

biosynthesis, leading to its inhibition (Figure 1) . Consequently, statins cause the upregulation of the expression of

LDL receptors, improving the clearance of LDL in circulation . It was previously demonstrated that statins increase

HDL levels by 5% to 10% . The mechanism that leads to this increase is still not very clear, however, it is already known

that some statins improve ABCA1 expression and hepatic apoA-I production, which consequently increase HDL-c

formation, leading to the association of statin therapy with enhanced RCT . Despite the good results obtained with

statins therapy, these drugs can cause some adverse effects. There are cases for which the statins treatment is not

recommend; for example, some people are intolerant to statins, specifically patients with high cardiovascular risk. One

approach to avoid the side effects of statins is to use the combination of statins with non-statin lipid-modifying drugs.

Ezetimibe (trademark name Zetia), the first drug approved after statins, is a potent intestinal cholesterol absorption

inhibitor that targets NPC1L1 . This therapy also presents good results in terms of decreasing LDL-c . Beyond the

use of ezetimibe alone, another treatment approach to primary hyperlipidemia is its use in combination with statins, which

has a synergistic effect with greater results for the reduction of blood Tc and LDL-c .

To prevent hypercholesterolemia and complement the drug treatments with statins, ezetimibe, or other drugs, it is

important to look for new potent drugs and/or new therapeutic strategies, such as the use of dietary supplements derived

from natural products .

3. The Anti-Hypercholesterolemic Effect of Brown Algae

The search for new drugs, nutraceuticals, and dietary supplements based on natural compounds has led to a growing

interest in the study of the composition and bioactivity of marine algae . Around the world, there are about 1800

species of brown algae (Phaeophyta), showing a variety of size and forms range from small filamentous to large and

complex structures . Most species of brown algae are exclusively found in oceans dispersed in cold waters along

continental coasts and can also be found attached to rocky coasts in temperate zones or floating freely . Just 1% of

brown algae species can be found in freshwater, which are usually attached to rocks . Brown algae species contain a

variety of compounds, such as proteins, minerals, vitamins, alkaloids, sterols, fatty acids, carotenoids, non-digestible

polysaccharides, and phenolic compounds, mostly phlorotannins . However, the composition of algae is greatly

affected by the geographic and atmospheric conditions of their habitat . It is also necessary to take into account that

post-harvesting storage and processing, such as extraction using different solvents (water, organic solvent, water–organic

solvent mixtures) can also affect the composition of the obtained algae extract . These algae species have been

intensively studied not only for their anti-hyperlipidaemic activity , but also for their anti-tumorigenic , anti-

diabetic , antiviral , anti-inflammatory , and antioxidant capacities, among others.

Different in vivo studies, summarized in Table 2, have reported the hypocholesterolemic effect of different brown algae

species . In studies where brown algae extracts were used for diet supplementation or in oral

administration, it was reported that, in general, there is a decrease in Tc, TG, and LDL-c levels and an increase in HDL-c

levels. In these reports, the effects of brown algae on lipid levels were associated with a possible impact on the

cholesterol biosynthesis due to a modulation effect on the high affinity receptor of lipoprotein metabolism . In

addition, brown algae have been reported to have the capacity to increase cholesterol excretion in feces due to the ability

of the algae compounds to bind dietary cholesterol . The mechanisms for the cholesterol-lowering effects of brown

algae have not been clarified yet, but have often been associated with the presence of the diversity of compounds

identified in these species, which led to the study of the hypocholesterolemic effect of isolated compounds obtained from
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different brown algae species. The most studied brown algae compounds in this area have been carotenoids,

polysaccharides, and phlorotannins, and more recently interest has emerged in the hypocholesterolemic potential of alga-

derived proteins and peptides.

Table 2. Overview of the in vivo hypocholesterolemic effect of different brown algae species under different extraction

conditions.

Brown Algae
Specie Algae Preparation and Administration Mode Effect Ref.

Ecklonia
stolonifera

Oral administration of EtOAc and n-BuOH fractions derived from EtOH
seaweed extract
at a dose of 100 mg/kg of body weight

↓ Tc, TGs, LDL-c
↑ HDL-c

Ecklonia cava Capsules, twice per day (200 mg seaweed powder per tablet) ↓ Tc, LDL-c

Iyengaria stellata Oral administration of ethanol extracts suspended in distilled water at 10
mg/200 g of body weight

↓ Tc, TGs, LDL-c
↑ HDL-c

Colpomenia
sinuosa

Oral administration of ethanol extracts suspended in water at 10 mg/200 g
of body weight

↓ Tc, TGs, LDL-c
↑ HDL-c

Spatoglossum
asperum

Oral administration of ethanol extracts suspended in distilled water at 10
mg/200 g of body weight

↓ Tc, TGs, LDL-c
↑ HDL-c

Spatoglossum
asperum

Diet supplemented with oily fractions of seaweed at 10 mg/200 g of body
weight ↓ Tc, TGs, LDL-c

Heterochordaria
abietina Diet supplemented with 5% seaweed powder ↓ Tc, LDL-c

Sargassum
micracanthum Diet supplemented with 5% seaweed powder ↓ Tc, TGs

Sargassum
patens Diet supplemented with 5% seaweed powder ↓ Tc, LDL-c

Cystoseira
sisymbrioides Diet supplemented with 5% seaweed powder ↓ Tc, free

cholesterol, LDL-c

Laminaria
diabolica Diet supplemented with 5% seaweed powder ↑ HDL-c

Sargassum
ringgoldianum Diet supplemented with 5% seaweed powder ↑ HDL-c

Padina
arborescens Diet supplemented with 5% seaweed powder ↑ HDL-c

Sargassum
polycystum Diet supplemented with 5% seaweed powder ↓ Tc, TGs, LDL-c

↑ HDL-c

Undaria
pinnatifida Diet supplemented with 100 g of seaweed powder/kg of body weight ↓ Tc, TGs, LDL-c

↑ HDL-c

Tc: total cholesterol; TGs: triglycerides; LDL-c: low-density lipoprotein cholesterol; HDL-c: high-density lipoprotein

cholesterol.
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