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Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents. Apart from

their glucose-lowering effects, large clinical trials assessing certain SGLT2 inhibitors have revealed cardiac and

renal protective effects in non-diabetic patients. These excellent outcomes motivated scientists and clinical

professionals to revisit their underlying mechanisms. In addition to the heart and kidney, redox homeostasis is

crucial in several human diseases, including liver diseases, neural disorders, and cancers, with accumulating

preclinical studies demonstrating the therapeutic benefits of SGLT2 inhibitors.

SGLT2 inhibitors  antioxidants  diabetes  cardiovascular diseases  nephropathy

liver diseases  neural disorders  cancers

1. Introduction

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents that block renal

glucose reabsorption. SGLT2 inhibitors approved by the United States Food and Drug Administration (FDA) and/or

similar bureau in the European Union and other countries include empagliflozin, dapagliflozin, canagliflozin,

ertugliflozin, ipragliflozin, tofogliflozin, luseogliflozin, and remogliflozin . In addition to lowering blood glucose,

SGLT2 inhibitors can reduce body weight, improve visceral adiposity, lower blood pressure, and normalize lipid

profile and serum uric acid levels . Notably, recent cardiovascular outcome trials (CVOTs) assessing SGLT2

inhibitors have shown improvements in cardiovascular and renal outcomes in patients with and without type 2

diabetes mellitus (T2DM) . Based on accumulating evidence, the American Diabetes Association

(ADA)/European Association of the Study for Diabetes (EASD) recommends SGLT2 inhibitors as the mainstay of

treatment for T2DM .

1.1. Potential Antioxidant Roles of SGLT2 Inhibitors in Cardiorental Benefits in
Landmark Clinical Trials

Several mechanisms underlying the renal and cardiovascular benefits of SGLT2 inhibitors have been proposed.

SGLT2 inhibitors have been shown to directly reduce high glucose-induced oxidative stress in the proximal tubules

. Other mechanisms include reduced glomerular hyperfiltration via tubuloglomerular feedback, reduced

inflammation, ameliorated fibrosis, attenuated sympathetic nervous system activation, and improved mitochondrial

function . Interestingly, SGLT2 is not expressed in the adult heart. Proposed mechanisms explaining the

cardioprotective effects of SGLT2 inhibitors include osmotic diuresis, natriuresis, improved renal function, blood

pressure reduction, improved vascular function, increased hematocrit, changes in tissue sodium handling, reduced
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adipose tissue-mediated inflammation and proinflammatory cytokine production, a shift toward ketone bodies as

the metabolic substrate, lowered serum uric acid levels, suppression of advanced glycation end product (AGE)

signaling, and decreased oxidative stress . Most of these mechanisms account for the regulatory interplay

between the kidney and heart. Notably, SGLT2 inhibitors are capable of reducing oxidative stress in the heart 

and kidney . As potential antioxidants, SGLT2 inhibitors may offer direct cardioprotection and renoprotection.

1.2. SGLT2 Inhibitors Reduce Oxidative Stress in Human Diseases

Oxidative stress, defined as an imbalance between pro-oxidants and antioxidants, is a crucial factor underlying the

pathogenesis of multiple human diseases including diabetes, cardiovascular diseases, nephropathies, liver

diseases, neural disorders, and cancers . SGLT2 inhibitors act as indirect antioxidants due to their ability to

reduce high glucose-induced oxidative stress. In addition, SGLT2 inhibitors have been shown to reduce free radical

generation , suppress pro-oxidants (e.g., NADPH oxidase 4 [NOX4] and thiobarbituric acid-reactive substances

[TBARS]) , and upregulate antioxidant systems such as superoxide dismutases (SODs) and glutathione

(GSH) peroxidases . SGLT2 inhibitors have been shown to suppress cellular proliferation by reducing

oxidative stress in multiple types of cancer . Detailed discussion addressing specific markers of pro-

oxidants and antioxidants that are examined in various studies is presented in subsequent sections under different

disease headings.

1.3. The Anti-Inflammatory Features of SGLT2 Inhibitors

Inflammation plays important roles in diabetes, chronic kidney disease, cardiovascular disease, liver diseases,

neural disorders, and cancers. In various experimental disease models, SGLT2 inhibitors have been demonstrated

to exert anti-inflammatory effects . They are able to directly downregulate the expression of proinflammatory

mediators including monocyte chemoattractant proteinrac (MCP-1), TGF-β, TNF-α, interleukin-6 (IL-6), nuclear

factor κB (NF-κB) and C-reactive protein (CRP) . In addition to these direct influences of SGLT2 inhibitors

on inflammation, SGLT2 inhibitors are also able to attenuate inflammation by regulating renin-angiotensin system

(RAS) activity, tissue hemodynamic alterations and the imbalanced redox state . Oxidative stress activates a

variety of transcription factors, including hypoxia-inducible factor (HIF)-1α, p53, NF-κB, peroxisome proliferator-

activated receptor (PPAR) γ, and nuclear factor erythroid 2–related factor 2 (Nrf2), which, in turn, lead to the

expression of various chemokines and inflammatory cytokines . By reducing oxidative stress, in various

disease models, SGLT2 inhibitors have been shown to attenuate inflammation by regulating transcription factors of

these chemokines and cytokines. Detailed pathways will be discussed in subsequent sections in a disease-specific

fashion.

1.4. A Unique Perspective of SGLT2 Inhibitors

Oxidative stress plays a crucial role in numerous common but debilitating human diseases. As a result, reducing

oxidative stress acts as a promising strategy to offer the unmet needs of existing treatments of these diseases.

Accumulating evidence has demonstrated the therapeutic potential of SGLT2 inhibitors in these diseases, but the

antioxidant roles of SGLT2 inhibitors in these diseases are yet to be reviewed.
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SGLT2 inhibitors have received great attention from scientists and clinicians. The pros and cons of SGTL2

inhibitors have been extensively reviewed in a plethora of papers . Assessment on the research

design, outcomes and limitations of large landmark trials on SGLT2 inhibitors have been thoroughly discussed 

 and are beyond the scope of this entry. This entry focuses on recent advances in SGLT2 inhibitor research

from an antioxidant perspective. Researchers searched the Ovid MEDLINE, PubMed, Embase and Cochrane

databases for SGLT2 inhibitors, antioxidants, oxidative stress, diabetes, cardiovascular diseases, kidney, liver,

neural disease, and cancers published up to 30 April 2021. Researchers will discuss how SGLT2 inhibitors reduce

oxidative stress in human diseases. Although experimental and clinical evidence supporting SGLT2 inhibitors as

antioxidants are not equally present in each disease discussed, researchers structured their entry in a diseases-

specific fashion. By presenting this disease-specific entry, researchers hope scientists and medical professionals

will better understand the antioxidant roles of SGLT2 inhibitors in the disease-of-interest and quickly find out the

research gaps in their fields. Figure 1 illustrates the scope of this entry.

Figure 1. Antioxidant effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in human diseases, including

diabetes, cardiovascular diseases, nephropathy, liver diseases, neural disorders, and cancers. Oxidative stress is

commonly seen in human diseases. By reducing oxidative stress, SGLT2 inhibitors exhibit the therapeutic potential

in these diseases. The bullet points listed in each blue box summarize results of preclinical and clinical studies in

each specific disease. ROS, reactive oxygen species.

2. SGLT2 Inhibitors as Antioxidants in Diabetes

T2DM is a major threat to human health, impacting 9.3% of adults globally in 2019, thus resulting in several

microvascular and macrovascular complications, including retinopathy, nephropathy, peripheral arterial disease,

and cardiovascular disease . Oxidative stress is considered a major hallmark of the pathogenesis of T2DM and
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its complications. In patients with T2DM, hyperglycemia can upregulate chronic inflammation and increase reactive

oxygen species (ROS) generation, which ultimately causes endothelial dysfunction and vascular complications;

conversely, increased oxidative stress and persistent inflammation can aggravate insulin resistance and

exacerbate hyperglycemia in T2DM and prediabetes . Furthermore, the dysregulation of mitochondrial

oxidation and the complex interplay between nicotinamide adenine dinucleotide phosphate (NADPH) oxidases,

xanthine oxidase, endothelial nitric oxide synthase (eNOS), and AGEs contribute to the elevated oxidative stress

and hence deteriorate systemic complications of T2DM . To prevent complications and defer the

progression of T2DM, appropriate treatment of hyperglycemia and inhibition of oxidative stress are crucial. Several

strategies have been proposed to modulate oxidative stress and inflammation in T2DM, including dietary

intervention and medications such as antihypertensives, statins, antiplatelets, probiotics, and glucose-lowering

agents . Among these interventions, SGLT2 inhibitors have emerged as newly recognized antioxidant

agents, affording their effects not only via glucose control but also by lowering free radical generation and

regulating the antioxidant systems such as SODs and GSH peroxidases . In the following subsections,

researchers will focus on the antioxidant mechanisms underlying SGLT2 inhibitors in T2DM, as well as their

possible effects on insulin resistance and outcomes of T2DM.

2.1. The Antioxidant Mechanisms Underlying SGLT2 Inhibitors in T2DM

Accumulating evidence from experimental and clinical studies supports the antioxidant roles of SGLT2 inhibitors in

T2DM, with mechanisms that involve both inhibition of free radical generation and regulation of antioxidant systems

via direct modulative properties, as well as indirect influences from glucose-lowering and hemodynamic effects.

Several studies have described the mechanistic view of SGLT2 inhibitors in free radical suppression during T2DM.

Steven et al. examined the antioxidative effects of empagliflozin in Zucker diabetic fatty rats, demonstrating that

empagliflozin could prevent the development of systemic oxidative stress, AGE-receptor for AGEs (RAGE)

signaling pathway, and inflammation by lowering glucose levels, restoring insulin sensitivity, and improving the

redox status . Other studies in diabetic mouse models indicated that SGLT2 inhibitors suppressed NADPH

oxidase 4 (NOX4), enhanced Nrf2-heme oxygenase-1 (HO-1)-mediated oxidative stress response, regulated the

Sestrin2-mediated adenosine monophosphate-activated protein kinase-mammalian target of rapamycin (AMPK-

mTOR) signaling pathway, decreased oxidative stress, and therefore delivered renal, β cell mass, and

cardiovascular benefits . In a study utilizing human umbilical vein endothelial cells, SGLT2 inhibitors activated

the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/eNOS signaling pathway, decreased free radical

damage, and ameliorated endothelial dysfunction . Additionally, the antioxidant effects of SGLT2 inhibitors

involving other pro-oxidant enzymes and proinflammatory cytokines, such as monocyte chemoattractant protein-1

(MCP-1), have been described in animal and in vitro studies . Shao et al. and Sa-nguanmoo et al. reported

that SGLT2 inhibitors attenuated mitochondrial dysfunction via several pathways, including PPARγ coactivator 1α

and mitochondrial transcription factor A signaling in diabetic rat models, which also decreased free radical

generation . Moreover, in vivo and in vitro findings have indicated that the intrarenal hemodynamic effects

and inhibition of the RAS by SGLT2 inhibitors can ameliorate oxidative stress. In clinical studies of dapagliflozin
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and canagliflozin, decreased 8-hydroxy-2-deoxyguanosine (8-OHdG) and oxidized low-density lipoprotein (ox-LDL)

levels in patients with T2DM further corroborated the antioxidant effects of SGLT2 inhibitors .

Antioxidant systems are defense mechanisms against oxidative stress, and mechanistic evidence has indicated the

role of SGLT2 inhibitors in antioxidant enhancement. Oshima et al. revealed that empagliflozin increased

antioxidant proteins such as SOD2 and catalase in a diabetic rat model . In addition, beneficial effects on

manganese/copper/zinc-dependent SODs and GSH peroxidase were observed in SGLT2 inhibitor-treated animal

models . Improvements in GSH and GSH reductase profiles in leukocytes were documented in a prospective

observational study assessing patients with T2DM .

Collectively, SGLT2 inhibitors have multifaceted antioxidant effects in T2DM, involving suppressing free radicals

and enhancing the antioxidant system. Possible mechanisms include direct alleviation of mitochondrial dysfunction,

modulation of pro-oxidant enzymes and proinflammatory cytokines, and upregulation of antioxidant proteins 

. Moreover, SGLT2 inhibitors could indirectly ameliorate oxidative stress in T2DM by

decreasing AGE-RAGE interactions, with glucose control and regulation of intrarenal hemodynamics and the RAS

.

2.2. The Effects of SGLT2 Inhibitors on Insulin Resistance

Insulin resistance is a critical feature in the pathogenesis of T2DM, which also aggravates oxidative stress;

conversely, oxidative stress exacerbates insulin resistance, accelerating the progression of prediabetes and T2DM

. Emerging investigations have indicated that SGLT2 inhibitors might influence insulin signal transduction,

improve peripheral insulin sensitivity, and thus alleviate insulin resistance . Combined with the antioxidant

mechanisms mentioned above, SGLT2 inhibitors could disrupt the vicious cycle between insulin resistance and

oxidative stress and are therefore an excellent therapeutic option.

The benefits of SGLT2 inhibitors on insulin resistance originate from multiple mechanisms. In patients with

diabetes, Goto et al. evaluated the influence of empagliflozin treatment on insulin sensitivity of skeletal muscles;

following a one-week regimen, noticeable improvement in insulin sensitivity was detected, which was attributed to a

rapid correction of glucotoxicity . Additional experimental and clinical studies have supported the benefits of

SGLT2 inhibitors on β-cell function, insulin signaling, and insulin sensitivity via amelioration of glucotoxicity .

The effects of SGLT2 inhibitors on weight control and visceral fat lowering, attributed to glycosuria-related caloric

deposition, are also crucial for insulin sensitivity. Studies in Japanese and Indian diabetic populations have

demonstrated that SGLT2 inhibitors contribute to a reduction in body weight and visceral fat, improving insulin

sensitivity via alleviation of lipotoxicity . In animal models, SGLT2 inhibitors induced white adipose tissue

browning and improved fat utilization via an M2 macrophage polarization-dependent mechanism, thereby

increasing insulin sensitivity . To maintain better glucose homeostasis and enhance insulin sensitivity,

preservation of β-cell function is imperative, and SGLT2 inhibitors reportedly play vital roles in terms of this aspect.

Robust clinical evidence  on the β-cell protection afforded by SGLT2 inhibitors has been documented, with

several relevant mechanisms proposed, including deceleration of β cell death and regeneration of pancreatic islet
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cells via amelioration of glucotoxicity, lipotoxicity, inflammation, fibrosis, and oxidative damage . Furthermore,

Wei et al. reported that SGLT2 inhibitors induced β-cell self-replication, α-to-β cell conversion, and duct-derived β

cell neogenesis in an animal model, partially mediated by the additional promotion of glucagon-like peptide-1 (GLP-

1) secretion . Finally, the attenuative effects of SGLT2 inhibitors on oxidative stress and inflammatory responses

are also crucial for restoring insulin sensitivity, as discussed above.

In conclusion, SGLT2 inhibitors can decrease insulin resistance via multiple mechanisms, including glucotoxicity

correction, caloric disposition and lipotoxicity modulation, β cell preservation, and attenuation of oxidative stress

and inflammation. Collectively, the antioxidant properties and insulin-sensitizing effects of SGLT2 inhibitors could

disrupt the interplay between oxidative stress and insulin resistance in T2DM and serve as favorable therapeutic

options.

2.3. The Antioxidant Effects of SGLT2 Inhibitors on T2DM Outcomes

With favorable results reported in large clinical trials such as the Empagliflozin Cardiovascular Outcome Event Trial

in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose (EMPA-REG OUTCOME) trial, the Dapagliflozin in

Patients with Heart Failure and Reduced Ejection Fraction (DAPA-HF) trial, the Dapagliflozin and Prevention of

Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) trial, Canagliflozin Cardiovascular Assessment Study

(CANVAS), and the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation

(CREDENCE) trial, the cardiorenal protective benefits of SGLT2 inhibitors have been widely recognized. Notably,

clinical guidelines recommend SGLT2 inhibitors as the glucose-lowering agent for patients with diabetes presenting

a higher cardiovascular risk or renal insufficiency . Besides metabolic, hemodynamic, and diuretic

mechanisms, the antioxidant and anti-inflammatory effects of SGLT2 inhibitors also contribute to their cardiorenal

benefits . Some clinical studies on SGLT2 inhibitors have directly assessed the link between antioxidant effects

and their outcome benefits. In the Dapagliflozin Effectiveness on Vascular Endothelial Function and Glycemic

Control (DEFENCE) trial, an open-label prospective blinded-endpoint study, patients with T2DM, previously treated

with metformin, were randomized to receive either higher doses of metformin or metformin plus dapagliflozin;

effects on endothelial function and oxidative stress, as determined by the flow-mediated dilation method and

urinary 8-OHdG levels, respectively, were evaluated. After the 16-week study period, the dapagliflozin group

demonstrated greater improvement in endothelial function, especially in patients with glycated hemoglobin (HbA1c)

> 7.0%, and urinary 8-OHdG levels were significantly lower in the dapagliflozin group . In another open-label

prospective study evaluating Japanese patients with chronic heart failure and T2DM, the effects of add-on

canagliflozin on fat distribution, cardiac natriuretic peptides, renal function, endothelial function, and oxidative

stress were examined. During the 12-month treatment period, renal function, endothelial function, and cardiac

natriuretic peptides were all improved, and a decline in oxidative stress indicated by ox-LDL was observed . In

summary, SGLT2 inhibitors afford additional cardiorenal protection in T2DM, possibly attributed to the antioxidant

properties, as supported by experimental and clinical evidence.

3. SGLT2 Inhibitors as Antioxidants in Heart Diseases
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In patients with diabetes, aggressive blood sugar control can help prevent or improve small vessel disease

(neuropathy, nephropathy, retinopathy), as well as delay the occurrence of nephropathy . However, in diabetic

patients with significant vascular diseases, including stroke, myocardial infarction, heart failure, and death due to

cardiovascular disease, active blood sugar control may fail to reduce the risk of occurrence . Previously, in

addition to metformin, which may reduce myocardial infarction and heart failure, drugs such as sulfonylurea,

thiazolidinedione, dipeptidyl peptidase 4 inhibitors, and glucagon-like peptide-1 receptor agonists may increase the

incidence of heart failure or present inconclusive results (no class effect) . In contrast to

previous oral glucose-lowering agents, SGLT2 inhibitors showed additional benefits in cardiovascular outcomes in

three influential studies: the Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58

(DECLARE-TIMI 58) trial, the EMPA-REG OUTCOME trial, and the CANVAS program . Mounting evidence

has revealed that the cardiac benefits of SGLT2 inhibitors may be independent of glycemic control. The DAPA-HF

trial and cardiovascular and renal outcomes with empagliflozin in heart failure (EMPEROR-Reduced) trial

demonstrated that among patients with heart failure and a reduced ejection fraction, the risk of worsening heart

failure or cardiovascular death was lower in those who received SGLT2 inhibitors than in those who received the

placebo, regardless of the presence or absence of diabetes . In this entry, researchers focus on the

relationship between SGLT2 inhibitors and oxidative stress in heart failure and discuss the potential antioxidant role

of SGLT2 inhibitors.

3.1. Oxidative Stress, Diabetic Cardiomyopathy and Heart Failure

Heart failure and diabetes both present chronic low-grade inflammation. Cellular ion dysregulation, AMPK

inactivation, and ROS production are relevant factors in the development of inflammation . Inflammation may

also lead to fibrosis, cell death, and cardiac remodeling. Hence, inhibiting inflammation may be a crucial

mechanism for preventing and treating diabetes-related heart failure. Early increased oxidative stress is prominent

in heart failure and T2DM pathogenesis . Highly reactive ROS can oxidize several proteins, thereby altering

the function of these proteins. Furthermore, ROS is an upstream driver of endothelial dysfunction associated with

heart failure by increasing the uncoupling of nitric oxide synthase to convert nitric oxide into peroxynitrite 

. ROS have several detrimental effects on the myocardium, inducing cardiomyocyte electrophysiologic and

contractile dysfunction, mitochondrial dysfunction, and increased cardiac fibrosis . Therefore, reducing ROS

normalizes the function of many proteins in cardiomyocytes, which may prevent the development of heart failure.

Both heart failure and diabetic cardiomyopathy result in an energy crisis, which is manifested by a decrease in the

cardiac phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. Accordingly, cell low-energy sensors,

including sirtuin 1 (SIRT1) and AMPK, are activated. SIRT1 and AMPK are activated not only by starvation but also

by cellular stressors, including hypoxia, ROS, injured organelles, and misfolded proteins . SIRT1 eliminates

oxidative stress by enhancing antioxidant activity, directly reduces the inflammatory response to oxygen free

radicals, and reduces the lethality of oxidative stress . AMPK maintains mitochondrial function, thereby reducing

ROS formation and attenuating proinflammatory and pro-apoptotic responses . AMPK activity is increased in

failed cardiomyocytes . AMPK acts as an energy sensor and activates catabolism by increasing glucose uptake

and glycolysis while impairing anabolic reaction . Targeting the AMPK pathway by increasing AMPK activity has
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been shown to combat cardiac hypertrophy and myocardial failure . In addition, AMPK activity can be

associated with non-metabolic cellular processes, including regulation of vascular tone and inhibition of

inflammation .

AGEs mainly originate from the rearrangement of early glycation products . AGEs accumulate in plasma and

vascular tissues and directly interact with the extracellular matrix to induce arterial stiffness and reduced elasticity

. RAGEs on the surface of endothelial cells, vascular smooth muscle cells, and monocytes promote oxidative

stress and cause inflammation and fibrosis of the vessel . Activation of AGE-RAGE signaling is associated

with an increased risk of acute coronary syndrome and heart failure .

3.2. The Potential Antioxidant Effects of SGLT2 Inhibitors in Heart Failure

Several mechanisms have been proposed for the cardiovascular effects of SGLT2 inhibitors, including reduced

blood pressure, cardiac preload and afterload, plasma volume, increased hematocrit, increased myocardial

energetic efficiency, inhibition of Na+/H+ exchanger (NHE), and decreased oxidative stress . This entry

highlights the potential antioxidant effects of SGLT2 inhibitors in heart failure.

Notably, the effect of SGLT2 inhibitors in stimulating the activity of low-energy sensors is not mediated by the

SGLT2 protein in cells, as this effect can also be observed in organs that do not express SGLT2 . SGLT2

inhibitors activate SIRT1/AMPK and inhibit AKT/mTOR signaling; therefore, they can promote autophagy beyond

its effect on glucose or insulin . In addition, the activation of SIRT1/AMPK and inhibition of AKT/mTOR

signal transduction mediated by SGLT2 inhibitors can result in reduced oxidative stress, normalization of

mitochondrial structure and function, inhibition of inflammation, reduction of coronary microvascular damage,

enhancement of contractility, and reduced incidence of cardiomyopathy . Furthermore, the activation of

AMPK/SIRT1 and autophagic flux can be associated with the downregulation of ion exchangers, reportedly

involved in the pathogenesis of diabetic cardiomyopathy . Finally, the enhancement of HIF-1α/HIF-2αsignaling

by SGLT2 inhibitors may amplify the autophagic flux enhanced by AMPK/SIRT1, which may be an important

contribution to the cardiac benefits of these drugs, which are not observed with other glucose-lowering agents .

Reportedly, reduced AGE production and inhibition of the AGE-RAGE axis, along with the parallel reduction of

oxidative stress following ipragliflozin treatment, improved the endothelial function of diabetic mice .

Empagliflozin improved the cardiac diastolic function in a female rodent model of diabetes without normalizing

myocardial AGE levels . In cultured H9C2 cells, a hypoxia/reoxygenation model, empagliflozin increased cell

viability and maintained ATP levels . These effects were equally present in myocytes stimulated by AGE, and

empagliflozin did not alter the expression level of RAGE; this suggested that these pro-survival mechanisms of

empagliflozin were not mediated through AGE/RAGE signaling. The importance of AGEs and AGE-RAGE signaling

as mediators of SGLT2 inhibitor effects in the human heart remains elusive.

In patients with diabetes, hyperglycemia can promote glucose uptake by cardiomyocytes, which in turn impairs

cardiac function . It has been reported that glucose toxicity increases cardiac oxidative stress and exacerbates
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myocardial injury in patients with T2DM . SGLT2 inhibitors can prevent the absorption of excess glucose by the

heart. These inhibitors enhance the β-hydroxybutyrate content and convert the energy supply from fatty acids and

glucose to ketones, thus increasing the metabolic efficiency of the myocardium and decreasing oxygen

consumption . A study using a non-diabetic porcine model with myocardial infarction revealed that empagliflozin

increased myocardial ketone consumption while simultaneously decreasing glucose consumption. Increased

myocardial energetics leads to reversed anatomical, metabolic, and neurohormonal remodeling . Although

animal studies have confirmed this hypothesis, supportive clinical data are still lacking. In an attempt to translate

these preclinical results into the clinical arena, a recent clinical trial using empagliflozin (EMPA-TROPISM trial) was

conducted in non-diabetic patients with heart failure .

In summary, several lines of evidence emphasize the antioxidant roles of SGLT2 inhibitors in cardiovascular

diseases. Although this evidence supports the cardioprotective effects of SGLT2 inhibitors observed in large clinical

trials, additional research is critical to further elucidate regulatory pathways and explore novel therapeutic targets

that may present synergistic effects with SGLT2 inhibitors in affording cardioprotection.
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