
Oxidative Stress and Immune Response in Melanoma | Encyclopedia.pub

https://encyclopedia.pub/entry/40101 1/10

Oxidative Stress and Immune Response in
Melanoma
Subjects: Physiology

Contributor: Alessia Remigante , Sara Spinelli , Angela Marino , Michael Pusch , Rossana Morabito , Silvia

Dossena

Melanoma, a neoplasm arising from malignant transformation of melanocytes, is the most lethal form of skin

cancer.
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1. Melanoma Pathophysiology and Current Options for
Treatment

Melanoma, a neoplasm arising from malignant transformation of melanocytes, is the most lethal form of skin

cancer . However, melanoma can also develop on mucosal surfaces such as the oral cavity, the genital mucosa,

the upper gastrointestinal mucosa as well as the uveal tract of the eye and leptomeninges . The incidence of

cutaneous melanoma has rapidly increased over the past decades. Melanoma is the ninth most common

malignancy and the second for mortality, with an incidence being markedly increased in patients with a history of

heavy sun exposure or isolated episodes of serious sunburn . Although the majority of primary melanomas are

cured with local wide excision, metastatic melanoma carries a grim prognosis, with a median survival of nine

months and a long-term survival rate of 10% . Cancer metastasis is considered the end stage of the progression

of any tumour. It is composed of different steps that include infiltration of cancerous cells into the neighboring

tissue, followed by intravasation as tumour cells undergo trans-endothelial migration through the vessel wall and,

finally, extravasation and proliferation at the distant organ to form secondary tumours . About half of all

melanomas carry mutations in the BRAF gene, which makes these tumours amenable to targeted therapy. BRAF

V600 mutation-positive unresectable or metastatic melanoma in adults is treated with the selective competitive

inhibitor of BRAF kinase dabrafenib as monotherapy or in combination with the MEK inhibitor trametinib. Other

treatment options are represented by the immune checkpoint inhibitors, which include the PD-1 inhibitors

nivolumab and pembrolizumab and the CTLA-4 inhibitor ipilimumab. Second-line therapy is achieved by

chemotherapy with alkylating cytostatic dacarbazine (DTIC), amongst others. Radiation therapy can be a useful

treatment in some clinical settings including adjuvant therapy after complete excision of a primary melanoma or

after therapeutic lymphadenectomy .

2. Oxidative Stress and Melanocytes
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A distinctive feature of melanoma compared to other solid tumours is the especially high oxidative stress level,

which can be explained by both extrinsic and intrinsic factors . Due to their physical location, melanocytes

are directly exposed to environmental factors inducing oxidative stress, such as UV radiation .

Epidemiological studies have demonstrated a strong association between UV radiation and melanoma risk. UV

light is a type of electromagnetic radiation emitted by the sun. The UV spectrum is conventionally subdivided into

UVA radiation (320–400 nm), UVB radiation (280–320 nm), and UVC radiation (100–280 nm). Only UVA radiation

and a portion of the UVB spectrum (above approximately 300 nm) can reach the surface of the earth. Thus, both

UVA and UVB may contribute to melanoma development . UV radiation can lead to indirect oxidation-mediated

damage of cutaneous macromolecules by stimulating reactive oxygen species production through enzymatic

reactions catalyzed by enzymes such as NADPH oxidase (NOX1 and NOX4), cyclo-oxygenase, and xanthine

oxidase, or by the damage of mitochondrial respiratory chain enzymes. Alternatively, UV induces the skin to also

produce high levels of reactive nitrogen species (NO and possibly ONOO ) . When UV-stimulated reactive

oxygen species target DNA molecules, various types of oxidative DNA lesions are induced, including DNA single-

strand breaks, DNA–protein crosslinks, and alteration of DNA nitrogenous bases. In particular, the oxidation of the

guanine bases, which produces 8-oxo-7,8-dihydroguanine (8-oxoG), is the most abundant form of oxidative DNA

damage  (Figure 1). These alterations can induce inflammation and can further initiate tumorigenesis .

Reactive species and damaged DNA can activate intracellular protein complexes such as inflammasomes . In

this context, both keratinocytes and melanocytes secrete cytokines with pro-inflammatory action, thus modulating

innate and adaptive immune responses . All the immune-related molecules, cytokines, chemokines, and non-

immune molecules, such as growth factors have both paracrine and autocrine effects upon the microenvironment

and design the local milieu that initiates and then regulates local inflammation or can lose control, consequently

favouring the process of tumorigenesis. Inflammation has acute and chronic stages, but its link to tumorigenesis is

carried out by chronic inflammation . During inflammatory response, mast cells and monocytes/macrophages

are recruited . In particular, mast cells are the first to migrate to the site of proliferation; macrophages follow later

in the response. Both are capable of producing reactive species as a cytotoxic mediator to kill cells . Reactive

oxygen species can react with the nucleic acids attacking the nitrogenous bases and the sugar phosphate

backbone and can evoke single- and double-stranded DNA breaks . While acute inflammation is regulated by T-

helper (Th)1-polarized T lymphocytes attracted by innate immune cells, secreting mainly anti-tumour immune

molecules such as interleukin (IL)-2 and interferon (IFN)-γ, chronic inflammation is controlled by regulatory T cells

(Tregs), Th2 cells, that secrete pro-tumorigenic factors (IL-4, IL-6, IL-10, IL-13 and transforming growth factor

(TGF)-β) . In this regard, reactive species produced by melanoma cells and tumor-infiltrating leukocytes,

including Tregs, can suppress immune responses .

Additionally, UV-induced reactive oxygen species also attack other major biomolecules, causing protein oxidation

and lipoperoxidation that compromise cellular ultrastructure and function . In fact, when UV radiation hits the

skin, within sebaceous lipids, squalene is oxidized and can initiate inflammatory processes, thus acting as an

inflammasome activation danger signal (Figure 1). In this regard, it is worth mentioning that melanocytes are more

vulnerable to UV-mediated oxidative injury than other skin cells, such as keratinocytes and fibroblasts, since their

specialized function, namely the melanin synthesis, is an energy-consuming process that itself contributes to
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generating a large amount of reactive oxygen species . In fact, there are conflicting data in the literature on the

pro-oxidant and antioxidant effects exerted by melanin . The presence of melanin in the skin appears to be a

double-edged sword: it protects melanocytes through its capacity to absorb UV radiation, but its synthesis in

melanocytes results in higher levels of intracellular reactive oxygen species that may increase melanoma

susceptibility. During the melanin biosynthesis, tyrosinase enzyme oxidizes tyrosine to L-DOPA, which itself is

oxidized to DOPA-quinone, a reactive molecule toward thiols and/or amino groups. Afterward, a redox exchange

converts the DOPA-quinone into DOPA-chrome, which, after a decarboxylation yields dihydroxy-indole, or

alternatively, after tautomerization produces dihydroxy-indole carboxylic acid. The process that converts indoles to

quinones implicates an important generation of reactive oxygen species (O  and H O ) (Figure 1) . Finally,

the polymerization of the quinones results in the formation of black-brown eumelanin. Instead, the pheomelanin,

which displays a typical red-yellow colour, differs from the eumelanin for having a higher ratio of sulphur to

quinones, and its biogenesis process has as intermediate the generation of cysteinyl-DOPA instead of L-DOPA.

These variations are responsible for the higher pro-oxidant effects caused by the sunlight of pheomelanin with

respect to eumelanin. Eumelanin is a good free radical scavenger; pheomelanin is not, and its benzothiazole units

can act as photosensitizers leading to the production of reactive oxygen species . Paradoxically,

while high levels of reactive oxygen species can cause oxidative stress and induce cell death, low levels of

superoxide and H O  can promote G1→S cell cycle transition. Thus, oxidative stress or redox status shifts may

cause cell transition from a quiescent to a proliferative status, growth arrest, or cell death, according to the duration

and extent of the redox imbalance .

Figure 1. Major reactive species sources in melanocytes. The increase of reactive oxygen species (H O , O )

and/or reactive nitrogenous species (NO and ONOO ) induces severe damages to major biomolecules, resulting in

DNA and protein oxidation, as well as lipoperoxidation, that compromise cellular structure and function.

Consequently, these alterations can induce inflammation and can initiate tumorigenesis processes (e.g., cell

proliferation and adaptive immune resistance). To maintain acceptable levels of reactive species, melanocytes cells

usually increase their antioxidant systems to protect cells from oxidative stress damage and restore physiological

redox balance. The redox balance in the cell is normally regulated by a complex antioxidant system. Endogenous

antioxidants include catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases (GPXs) and glutathione
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(GSH). In particular, GSH metabolism protects melanocytes from the toxic effects of H O  formed during melanin

synthesis. GSH metabolism, therefore, appears to be critically important to the maintenance of melanocyte cell

viability . Instead, natural antioxidant compounds can be obtained from the diet, e.g., beta-carotene (vitamin A),

alpha-ascorbic acid (vitamin C), tocopherol (vitamin E) . The figure was created using BioRender.com.

3. Melanocytes and Immune Response

Accumulating evidence supports the concept that melanocytes are not only professional melanin-producing cells

but are also active factors in the cutaneous immune system . The production of melanin involves stepwise

oxidation of the amino acid tyrosine and downstream aromatic compounds. Myelinization has important protective

roles in several species, as toxic intermediates (semi-quinone, DOPA-quinone and indole-quinone) may be

produced, including reactive oxygen species. These intermediate compounds are believed to exert strong

antimicrobial activities, and melanin, the end-product of myelinization, may have the capacity to trap, inhibit, and

even kill invading bacteria and other microorganisms .

Melanin may also have a crucial immune-regulatory role. It has been found to have immune-modulatory activities

through inhibition of pro-inflammatory cytokine production by T lymphocytes, monocytes, fibroblasts, and

endothelial cells. The transfer of acidified melanin-containing organelles (melanosomes) from melanocytes to

neighboring keratinocytes in the outer portions of the epidermis may have a role in acidifying the stratum corneum

in darkly pigmented skin . Acidity in the stratum corneum could enhance skin barrier function and the integrity

and/or cohesion of stratum corneum; it might also exert antimicrobial function . In response to different stimuli,

melanocytes could also regulate cutaneous immune response by producing and releasing several immune-

suppressive molecules, e.g., alpha-melanocyte stimulating hormone (a-MSH). The latter participates in both anti-

inflammatory and immunomodulatory activities . In this context, it has also been demonstrated that melanocytes

are capable of phagocytosis. In this regard, melanosomes have functional and structural similarities to lysosomes,

and have been considered as indeed specialized lysosomes. Because phagocytosis is understood to be a

prerequisite for antigen processing and presentation, phagocytosis by melanocytes suggests that the melanocytes

have antigen presentation potential . Finally, human melanocytes express functional toll-like receptors (TLRs).

Upon ligation of TLRs with lipopolysaccharide, these cells may trigger NF-kB and/or mitogen-activated protein

kinase signaling pathways, thus producing several pro-inflammatory cytokines and chemokines. These molecules

may modulate the recruitment and activation of different immune cells in the skin. Thus, the expression of

functional TLRs on melanocytes suggests that they may act as early sensors in immune responsiveness .

4. Immune Evasion in Melanoma and Potential Novel Options
for treatment

Melanoma is also an immunologic malignancy . These cancer cells are constantly adapting to the host defenses

by manipulating intrinsic and extrinsic biological pathways . In the event of the onset and development of

melanoma, the immune system is exposed to numerous previously unseen antigens that are derived from genetic
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abnormalities. In this context, the immune system can recognize and eliminate some cancers at an early stage of

their development. The adaptive immune system appears to be of fundamental importance in the antitumor

response, which is triggered by activation of a wide range of diverse and highly specific receptors on T and B cells.

An effective immune response begins when the T or B cells recognize the tumor antigen in a pro-stimulatory

context and undergo activation and proliferation. B cells have as a receptor a surface IgM immunoglobulin and are

able to recognize soluble antigens, bind to them and differentiate into plasmacytes, which secrete large amounts of

highly specific antibodies . Unfortunately, melanoma cells may develop numerous immuno-evasive mechanisms

that allow them to resist natural or therapy-induced immune attacks . Through these mechanisms, tumour cells

are capable of modulating themselves and their surroundings in order to promote their survival, growth, and

invasion, even under persistent immune pressure. Indeed, stressors present in the tumour microenvironment, such

as chronic hypoxia, play crucial roles in promoting tumour cell plasticity and heterogeneity, which finally leads to

the acquisition of immune tolerance and tumour progression . The plasticity of melanoma cells leads to a

phenomenon called immune escape, whereby cancer cells acquire a less immunogenic phenotype and the ability

to suppress anti-tumour immune cells within the tumour microenvironment . Although the introduction of

the immune checkpoint inhibitors mentioned above has undoubtedly represented a great advancement in the

treatment of melanoma and has improved patient prognosis, many patients do not respond to therapy and

consequently remain with limited options for treatment. Novel treatment options might include newer checkpoint

inhibitors such as B- and T-lymphocyte attenuator (BTLA), lymphocyte- activation gene 3 (LAG-3), and T-cell

immunoglobulin and mucin domain-3 (TIM-3) inhibitors . These are subject of intense investigation in preclinical

and clinical studies .

A possible alternative strategy to improve therapeutic efficacy can be targeting the redox balance in cancer cells

. Ion channels are transmembrane proteins that connect the inside of the cell to its outside in a selective fashion

by regulating the ionic permeability of cell membranes. Ion channels represent an important class of biomolecules

due to their ability to serve as key elements in signaling and sensing pathways . Over the past 10 years,

it became obvious that ion channels play a key role in cancer development by influencing cell migration, cell cycle

progression, and proliferation . During the transition from a normal cell towards a cancer cell, a

series of genetic alterations occur, which may also affect ion channel expression, or may cause a change in ion

channel activity. To name just some examples, cell migration is important not only for initiation of metastasis ,

but also plays a critical role for the homing of tumour-infiltrating lymphocytes . In addition, ionic (calcium)

signalling might influence the tumour microenvironment and change the fate of the melanoma by altering the

function of innate and adaptive immune cells and regulating extracellular matrix and tumour vascularization, thus

adapting to different physical and chemical surroundings . Since ion channels are mostly localized to the plasma

membrane, they can be subjected to multiple layers of regulation, and therefore represent promising targets for

therapeutic intervention in cancer. Indeed, reactive oxygen species production can directly induce post-translational

modification of ion channels leading to oxidation and/or nitration of specific amino acid residues or indirectly

modulate channel function by affecting the intracellular signaling pathways .
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