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Indicaxanthin is a dietary, highly bioavailable phytochemical from cactus pear fruit, with nutraceutical potential.

Studies in healthy, transformed cells and whole organisms suggest health-promoting activities, particularly in

counteracting inflammation and regulating mechanisms that control cell growth and longevity. In vitro evidence to

date does not provide a unified picture of the molecular mechanisms mediating the action of Indicaxanthin; rather

different mechanisms have emerged in relation to different stimuli and conditions in both healthy and transformed

cells. Many of the activities appear to be geared toward restoring cellular redox homeostasis, correcting

dysfunction generated by oxidative stress, and modulating signaling pathways that control vital processes in

healthy cells; other activities, apparently independent of cellular redox balance, have also been observed.

betalains  human bioavailability  antioxidative  pro-oxidant activity

1. Indicaxanthin, Redox Balance and Oxidative Stress in
Healthy Cells

Phytochemicals are recognized as valuable in maintaining cellular redox homeostasis. To what extent is the redox

chemistry of Indicaxanthin involved in its effects on cells?

Data so far show that Indicaxanthin is stable and does not interfere with the physiological redox state of healthy

cells, in the absence of pro-oxidant stimuli. This was observed with various cell lines incubated with amounts in a

fairly wide range of concentrations, including postprandial blood levels (5–10 μM) up to more than one order of

magnitude in excess, for time intervals from 6 h to 72 h . On the other hand, the extent and nature of

the pro-oxidant insult has appeared to be decisive for its response and activity.

2. Indicaxanthin Activity in Organ Bath

An experimental approach using a mouse ileum preparation showed that, as a component of an aqueous extract of

the cactus pear fruit, Indicaxanthin exerted antispasmodic effects on intestinal motility . It is interesting that

vitamin C, to the extent of its content in the fruit extract, potentiated the effect of purified Indicaxanthin. Protection

of integrity and stability of the phytochemical by ascorbic acid are known in solution under a variety of conditions .

Functional interactions between these bioactive dietary components in a complex biological environment may

deserve deeper investigation.
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On a mechanistic perspective, the myorelaxant effect was independent of neurotransmitter release and ascribed to

direct action of Indicaxanthin on the smooth muscle cell, in particular the inhibition of a phosphodiesterase isoform

. This caused an increase of intracellular cAMP, a second messenger associated with smooth muscle inhibitory

effects , including gastrointestinal smooth muscle relaxation  (Table 1). Among 11 different isozymes of the

PDE family, the PDE-3 and -4 are expressed in the ileal smooth muscle . Dynamic interactions between

Indicaxanthin and PDE-4 have recently been described by a molecular modelling approach. The ability to cross cell

membranes  and reach and accumulate in the cytoplasm could allow Indicaxanthin to target the enzyme.

More intriguing though still unexplored possibility is that Indicaxanthin located at the membrane  would

interact with, or cause alteration of the lipid bilayer surrounding the exclusive and large trans-membrane NH-

terminal of PDE-3, a segment involved in inhibiting the enzyme activity .

Table 1. Bioactivities of Indicaxanthin in cells and tissues.
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Cells Experimental
Design Effect Key Molecular

Mechanisms Ref.

RBCs
(human)

Exposure to cumene
hydroperoxide
Exposure to toxic
oxysterols

Antioxidant

Antioxidant
Anti-eriptotic

Radical-scavenging
 Resistance to oxidative

hemolysis

 ROS production,
glutathione depletion,
PGE2 release, and Ca
entry

β–Thalassemia RBCs
(from patients)

Exposure to cumene
hydroperoxide

Antioxidant Perferryl-Hb reduction
 Resistance to oxidative

hemolysis
 Vit E and GSH depletion
 Lipid and hemoglobin

oxidation

HUVEC
(human umbilical vein
endothelial)

Exposure to oxidized
human LDL

Exposure to TNFα

Anti-
inflammatory

Anti-
inflammatory

 ROS formation
 NF-κB transcriptional

activity
expression of adhesion

molecules (ICAM-1;
VCAM-1; ELAM-1)
Preserved activity of
cholesterol efflux system
ABC-A1

 expression of ICAM-1

RAW 264.7
(murine macrophages)

Exposure to LPS Anti-
inflammatory
Pro-oxidant

 NF-κB activation
 lipid hydroperoxides
 HNE formation

Modulation of

2+
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3. Indicaxanthin and Oxidative Stress in Tumor Cells

Because cancer is seen as a disorder related to oxidative stress, phytochemicals with antioxidative capacity and a

supposedly favourable side effect profile, have been the subject of research to prevent, counteract and treat this

disease . Chemo-preventive and pro-apoptotic activities and anti-proliferative effects of Indicaxanthin have

been shown in several cell lines of different cancers, namely colon , melanoma , and cervical cancer , and

in a mouse melanoma model as well.

Cells Experimental
Design Effect Key Molecular

Mechanisms Ref.

prostaglandin biosynthetic
pathway:

 mPGES-1 expression
 COX2 and MPGDS

expression
 Synthesis of proresolvin

cyclopentenone

Differentiated human Caco-2
(colorectal adenocarcinoma)

Exposure to IL-1β

Exposure to a mixture
of TNFα, IL-1 β, IFNγ

Anti-
inflammatory

Anti-
inflammatory

 active NOX-1 assembly
 ROS generation
 NF-κB activation
 COX2 and NOS

expression

 release of IL6, IL8,
PGE2, NO

 expression of
inflammatory
IL6, IL8, COX2, NOS,
NOX-1

 expression of
glutamate-
cysteine ligase catalytic
subunit (GCLC) and
glutathione peroxidase-1
(GPX-1)

THP-1
(human
monocyte/macrophages)

exposure to 7-keto-
cholesterol

Anti-apoptotic  NOX-4 basal activity
 NOX-4 over-expression
 NF-κB activation
 intracellular Ca
 mitochondrial apoptotic

pathway

OECS
(olfactory ensheating nerve)

Exposure to amyloid
beta

Anti-apoptotic
and cell
regenerating

 O  and ROS
production

 transglutaminase 2
expression

 caspase 3 expression
 nestin and cyclin-D1

Tissues

Mouse ileum muscle Recording of
spontaneous or
carbachol- or KCl-
evoked mechanical
activity in organ bath

Spasmolytic Interference with pathways
regulating intracellular
Ca  release

 Phosphodiesterase
activity

 cAMP
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 increase;  decrease with respect to relevant experiment in the absence of Indicaxanthin.

Cancer cells establish and maintain a very different redox tone from that of healthy cells. A sustained imbalance in

cell redox homeostasis, caused by elevation of ROS production via mitochondrial dysfunction and NOXes activity

, and/or to a decline of ROS-scavenging capacity, activates oncogenic pathways  and is a recognized

cause for cancer initiation . Subsequently, cancer cells adapt to high levels of ROS by up-regulation of

antioxidant systems, to limit oxidative damage and escape apoptosis. Then, while targeting ROS and ROS

signaling with antioxidants is a potential strategy to prevent cancer and/or in the precancerous lesion stage, it may

be inappropriate or even detrimental at an advanced stage. Instead, at this point, very high levels of ROS would be

required to promote cell death pathways , or agents that abrogate the antioxidant systems or target unique

biochemical features of cancer cells . In this scenario, phytochemicals shown to inhibit proliferation in

several tumor cell lines have been associated with several activities: they can act as ROS scavengers; modulate

redox-dependent pathways and transcription factors that control gene expression and apoptotic death; activate

epigenetic mechanisms; elicit anti-oxidative effects by induction of enzymes involved in antioxidant defence; be

pro-oxidant or induce ROS production to kill cancer cells . As for the Indicaxanthin, its antiproliferative

effects seemed to be the result of different activities. The in vitro studies have shown that concentrations 5 to 20

times higher than those measured in human plasma after dietary ingestion are required to be effective. The

findings are reported in this section, with emphasis on the substantiated mechanisms of action. Based on the

known properties of the molecule, additional or alternative mechanistic approaches are also proposed for future

research.

Added to proliferating Caco-2 colon adenocarcinoma cells, Indicaxanthin caused a concentration-dependent

growth arrest with apoptosis at 48 h, and IC  of 115 μM . The anti-proliferative activity was not associated with

changes in the cellular redox balance. Indicaxanthin did not scavenge ROS, nor did it change their intracellular

level, nor the level of total thiols . Somewhat intriguingly, this could implicate that Indicaxanthin did not affect the

activity of NOX-1, the main source of ROS in colon cancer cells , which instead occurred in the differentiated

normal-like Caco-2 cells, when submitted to the inflammatory agent IL1-β . Lipid composition and biophysical

properties of cancer cell membranes are quite different from those of healthy cells , it would be meaningful to

find out whether and to what extent Indicaxanthin interacts with the membranes of colon cancer or other tumor

cells.

Aberrant methylation patterns, i.e., global DNA hypo-methylation contributing to chromosomal instability, but site-

specific CpG promoter island hyper-methylation with silencing of tumour suppressor genes, characterize tumor

cells, and have been extensively investigated in colorectal cancer . The studies of Naselli et al.  revealed

that Indicaxanthin was able to modulate the epigenome-regulated gene expression by affecting DNA methylation at

multiple levels. Treatment of Caco-2 cells with Indicaxanthin (50 μM) increased the global DNA methylation and re-

activated the expression of the onco-suppressor p16  gene inducing demethylation of its promoter region 

thus driving cell arrest and apoptosis . Anti-proliferative effects of Indicaxanthin were also observed in

other colon cancer cell lines such as LOVO-1, HCT-116, DLD-1, but not in HT-29, with differences in magnitude of

effects, and Caco-2 cells as the most responsive . In addition to p16  Indicaxanthin induced demethylation in

the promoters of other onco-suppressor genes (GATA4; ESR1), but left others unchanged (SFRP1; HPP1). The

Cells Experimental
Design Effect Key Molecular

Mechanisms Ref.

Vitamin C potentiated the
Indicaxanthin effect[27][28] [29]
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basal methylation seemed to be determinant, being the promoters with the highest methylation levels (SFRP1,

HPP1) unaffected .

Molecular mechanistic explanations have been attempted. The methylation status of DNA results from the cross-

talk between the activity of well characterized methylating enzymes (DNMT), DNMT1, DNMT3A, DNMT3B, and of

less known proteins working to transform (TET family enzymes) and remove (MBD4, GADD45A) the methyl groups

. Indicaxanthin treatment (100 μM) was associated with over-expression of at least one of the DNMTs in all

cell lines considered, and of TET2, MBD4, and GADD45A in LOVO1, DLD1 and HCT-116 cells . The remarkably

increased expression of DNMT3A (but not DNMT1, nor DMT3B) rationalized the increase in global DNA

methylation in Caco-2 cells; however, none of the demethylase genes was affected, in contrast with the GATA4

demethylation and reactivation of the p16  gene . Ultimately, a cell-independent procedure showing that

Indicaxanthin inhibited the total nuclear DNMT, and an in silico computational modelling analysis revealing a stable

binding of the phytochemical at the DNMT1 catalytic site , suggest that Indicaxanthin could block the DNA

methylation process operating at a gene-specific level . Intracellular uptake and accumulation of Indicaxanthin in

Caco-2 cells , as a necessary precondition for this activity have been observed. Redox regulation and

signaling may be upstream of epigenetic modulation ; direct inhibition of methylating enzymes could explain the

activity of Indicaxanthin in proliferating Caco-2 cells where the phytochemical did not appear to alter the redox tone

.

Epigenetic modifications, potentially reversible, occur early in the process of carcinogenesis, thus representing a

target of choice to prevent malignant transformation in cancers with long precancerous stages such as colorectal

cancer. Activity at this level may reveal chemopreventive compounds. Phytochemicals in the diet, which can be

taken continuously throughout life, can act as natural controllers in a process at the confluence of redox biology

and gene-environment interactions. Importantly, Indicaxanthin selectively acted at the level of modified regulatory

mechanisms in the transformed cells and did not affect the viability of non-malignant colon cells, either at the IC

concentration or at twice the concentration . Considering the digestive stability and approximate concentration at

the intestine after a cactus pear fruit meal , Indicaxanthin appears to be a chemopreventive component of

the diet.

Investigation in melanoma cells  provided evidence of a concentration-dependent anti-proliferative effect of

Indicaxanthin (50–200 μM) in human A375, cell lines, with growth inhibition going from 20% to 56% at 72 h. A

comparable response was observed in murine B16/F10 cells, whereas the inhibitory activity in other cell lines (Sk-

Mel-28, MALMF) was remarkably lower. Indicaxanthin did not affect the growth of normal human melanocytes

under comparable conditions. With regard to molecular mechanisms, growth arrest and apoptotic death were

strictly related to the inhibition NF-κB transcription factor and downstream-regulated events, including the

expression of two anti-apoptotic proteins, B cell lymphoma gene-2 (Bcl-2) and FLICE inhibitory protein (c-FLIP).

It may be worth noting that NF-κB is subjected to several controls and activating mechanisms  finely tuned by

oxidants  and that NADPH oxidases  and superoxide  play a main role in maintaining the aberrant

NF-κB activation in cancer cells. Whether Indicaxanthin induced redox changes in the melanoma experimental
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setup has not been reported, which does not allow confirmation, or refutation, of what has been observed in Caco-

2 cells , i.e., that Indicaxanthin does not affect NOX activity or ROS level in tumor cells. In addition, the pro-

tumorigenic role of NOXes varies with cancer type ; in-depth studies on the interaction of NOX with the tumor

microenvironment and potential interference by Indicaxanthin should be performed. Other data deserve to be

considered. In silico studies have shown that Indicaxanthin can bind and inhibit the active form of human IKKB, the

enzyme responsible for the inactivation of IKΒ-α, the NF-κB inhibitor . Such targeting could offer the advantage

of blocking NF-κB directly and would make the action of Indicaxanthin independent of the variety of mechanisms

and pathways that activate the NF-κB signaling in a cell- and agent-specific manner . NF-κB has a key role in

inflammation, immunity and cancer , a reason why new effective and non-toxic compounds to counteract its

activity in chronic inflammation, autoimmune diseases, and tumorigenesis are continuously investigated .

However, complexities exist for the development of clinically effective inhibitors, as this factor is required to ensure

normal immune response and cell survival, i.e., global inhibition of NF-κB function can have serious side effects.

Clarifying the aspects and pathways of NF-κB activation and its inhibition by Indicaxanthin in individual diseases

will be critical to assessing the potential of the phytochemical as a nontoxic compound to control this factor.

Apart from individual inhibitory effects on cancer cell growth, phytochemicals may exert synergistic effects with

other phytochemicals or anticancer drugs . Recent studies in HeLa cells  provide further information on the

anti-proliferative effect of Indicaxantin and suggest its eventual relevance to enhance chemosensitivity of cisplatin

(CDDP). A concentration-dependent antiproliferative activity, related to mitochondrial-dependent apoptosis and

arrest of cell cycle, was observed when HeLa cells were treated for 24 h with Indicaxanthin (IC  149.55 μM) or

CDDP (IC  23.91 μM) alone . Remarkably, when cells were submitted to a combination regimen of

Indicaxanthin and CDDP, the Combination Index analysis  provided clear evidence of synergism. Moreover, the

pre-treatment of HeLa cells with concentrations of Indicaxanthin of nutritional relevance , which were ineffective

in modifying cell viability per se, potentiated CDDP activity significantly.

Elucidating the mechanism of action of Indicaxanthin in this model, on the one hand would add new knowledge

about the potential of the molecule against cancer, but also shed light on the interactions with CDDP, which may

serve as a rationale for therapeutic strategies. Apart the formation of adducts with nuclear DNA, the impact of

CDDP with mitochondria and mitochondrial genome, followed by ROS generation, has emerged as a cause of

cytotoxicity in tumor cells , which was observed in the CDDP-treated HeLa cells. In contrast to CDDP, the

apoptotic activity of Indicaxanthin was not related to formation of DCFDA-reactive substances, nor did

Indicaxanthin affect key markers of the intrinsic apoptotic pathway, or cell cycle-related proteins or transcription

factors. Nevertheless, the CDDP/Indicaxanthin combination resulted in a ROS production and expression of

apoptosis-related proteins significantly higher than those observed with CDDP alone.

The importance of elevated production of ROS in the apoptotic action of the combination Indicaxanthin/CDDP was

highlighted by the inhibition (over 60%) observed in the presence of NAC , however mechanisms through which

Indicaxanthin individually promoted apoptosis, or enhanced the prooxidant/apoptotic capacity of CDDP, remain to

be clarified. Hypotheses could be made based on previous information. It seems important to emphasize that a

substantial anti-proliferative activity of Indicaxanthin in HeLa cells needed concentrations of the order of 10  μM
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(IC  around 150 μM); on the other hand, nontoxic amounts of the phytochemical (2–10 μM) potentiated the

antiproliferative activity of CDDP up to threefold. These findings may suggest distinct activities and possibly

molecular mechanisms that complement each other.

Anticancer prodrugs, including phytochemicals, can be activated under high level of oxidants , and become pro-

oxidant in cancer conditions . Membrane lipids are prone to oxidation in cancer cells, whose environment is rich

of ROS . Under these circumstances, pro-oxidant behaviour of Indicaxanthin through activation on lipoperoxides

, can be predicted at the concentrations required to inhibit the HeLa cell growth (50–200 μM). This may

eventually promote formation of lipid oxidation breakdown products, including HNE , a mediator known to affect

cancer cell proliferation  and induce apoptosis in HeLa cells . Monitoring lipoperoxides and HNE formation

and consumption of Indicaxanthin could test this hypothesis.

An activity at the membrane of cancer cells may be considered to explore whether non-cytotoxic Indicaxanthin may

facilitate transport/permeation of CDDP. The latter involves interactions of cisplatin with membrane lipids and

changes in membrane phase behavior , which could be affected by amphipathic Indicaxanthin. Such behavior

would be highly relevant to clinical treatment. Facilitating drug entry could effectively decrease the ratio of

circulating cisplatin to cellular amount for optimal effect, ultimately reducing the serious side effects of the drug by

improving therapeutic efficacy.

The absence of toxicity of elevated amounts of Indicaxanthin observed in various studies  suggests safety

and potential utility in Combo Therapy to overcome toxicity and drug resistance in cancer treatment .

CDDP, in particular, has antitumor activity against several types of cancer, which makes it desirable that the activity

of their combination be studied in other cancer cells besides HeLa ones, as well as in animal models. In addition,

combination of Indicaxanthin with other clinically used anticancer drugs to enhance chemotherapeutic potentiality

should be checked.
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