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Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion
and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very
important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN,
(Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD)
method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to
cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation
processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD
coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient
of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time
and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic
deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion
and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best
resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the
lower the wear rate, but there are also many exceptions
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| 1. Introduction

Hydraulic machines especially in hydropower plants are exposed to erosion caused by cavitation and/or solid particles
that move with the flowing water. Erosion of the hydro turbines has become a serious economic issue due to maintenance
costs and loss of efficiency caused by surface degradation. Despite using computational fluid dynamics simulation to
optimize the design of water turbines and minimize the level of erosion, the problem of erosion has not been fully resolved
W, The need for more and more efficient and reliable machines requires increasingly resistant materials. The cost of
elaborating and producing new highly resistant materials, as well as the production of machines from these materials, can
be very high. Since in many cases the surface of working elements or machines is exposed to the harmful environment,
the use of protective coatings allows improving the reliability and maintain manufacturing cost at reasonable level. There
are many methods of production of protective coatings, such as spraying processes, which include plasma spaying &,
high-velocity oxygen-fuel (HVOF) spraying 48 and also physical vapor deposition (PVD) method BIJEIE The |ast
method allows producing coatings with a wide range of properties. Hardness of the coating can be in the range from 5
GPa for Ti;1Mge9GdsNsg coating to 45 GPa for CrCN/CrN coating with 1 pm thick layer of tetrahedral carbon [L9ILL,
However, this method also allows producing reflective coatings, e.g., Nb,Os/SiO, coating, with a hardness even lower
than 1 GPa 12, Coatings of high hardness are mainly used for anti-wear applications, as protective coatings for tools and
knives 814 and for anti-erosion applications L2IEIL7  For that reason, resistance to sliding wear 18! trihological
properties 24, fracture toughness 1829 fatigue toughness B2 solid particle erosion resistance 2223 a5 well as
cavitation erosion resistance 241251 have been deeply investigated. Endurance properties of PVD coatings depend on their
hardness, elastic modulus, adhesion, residual stresses and structure (2812711281 The possibility of creating coatings with a
wide range of properties, by appropriate selection of deposition conditions and coating structure (mono-or multilayer)
makes them becoming more and more popular.

Among the listed types of damage, erosion is the most complex one because of simultaneous action of several types of
degradation. In each erosion process, e.g., solid particle erosion or cavitation erosion, the material surface is exposed to
multiple short-lasting and high velocity impacts that act on a very small area in an aquatic environment that promotes
corrosive processes. Thus, the erosion process includes such damage processes as: dynamic fracture in micro-volumes,
fatigue in micro-volumes, and corrosion. Hence, erosion resistant materials should be resistant to the mentioned damage
processes (2239 Most of the investigations prove that deposition of PVD coatings improve fatigue resistance 211[321331(34]
(35](36][37][38][39[40][41][42]  However, according to References BABAMLMS] deposition of PVD coating may also decrease




fatigue resistance or has no effect on fatigue resistance 842l in comparison to that of substrate material. The
improvement of fatigue resistance of the material by deposition of PVD coatings depends on the following factors:
coatings properties, substrate properties and test conditions. Among coating properties, very important are adhesion,
fracture toughness, hardness (H) and Young’s modulus (E), resistance to plastic deformation (H/E and H3/E? ratios),
surface roughness and also coating thickness. Since with the increase of the H/E and H3/E2 ratios increases the tendency
of the coating to brittle fracture, these parameters are also considered as a measure of stiffness. Among substrate
properties, the most important are hardness, Young’s modulus and also fracture and fatigue toughness. In case of fatigue,
very important are such test conditions as frequency and a load ratio, R. In case of tests performed with R = -1,
deposition of PVD coatings leads to improvement of fatigue endurance in most cases [BLIB6I38I44] while in case of R =
0.1, the fatigue endurance depends on the coating thickness and material of the coating 43!, With increasing thickness of
PVD coating, the fatigue resistance decreases [B8I4145] However, the results of fatigue tests also depend on the
substrate material. For example, TiN coating deposited on 316L steel and tested at R = -1 and 50 Hz increased about
22% fatigue limit B, while deposited on Ti-6Al-4V alloy caused about 24% decrease in fatigue endurance 43l Testing
TiN coating deposited on Cr—Mo-V steel at R = -1 and 10 Hz, the fatigue limit increased only about 7% 451, Despite some
negative results of obtained in fatigue tests of PVD coating, many investigations confirmed improvement of fatigue
strength by depositing PVD coating. Thus, the improvement in fatigue strength along with high hardness contributed to the
interest in these coatings as protective coatings against erosion (cavitation, water droplets and particle erosion).

Resistance to erosion or wear increases with increasing duration of incubation period, decreasing cumulative weight or
volume loss, as well as decreasing erosion rate. Erosion or wear resistance is usually determined as the inverse of the
erosion/wear rate, which in turn is determined in erosion/wear tests. Recent investigations of bulk materials and PVD
coatings showed that the test conditions and erosion intensity highly influence the erosion rate 234847 The test
conditions depend on the construction of test devices. There are many types of cavitation erosion and solid particles test
devices 48114911501 Some of them generate very intensive erosion, some low and some allow modification of test conditions
and testing at different erosion intensities. This is the reason why the tests results may be different, sometimes
contradictory. In addition, it is difficult to compare the tests results performed at different devices.

Because the material property that has largest impact on resistance to cavitation erosion, solid particle erosion and wear
is hardness BB hard coatings are tested as anti-erosion and anti-wear coatings [22B3IB4ES |n the case of PVD
coatings, the properties affecting their resistance to erosion depend on such factors as the technique and parameters of

deposition [2Q[4143] the coatings thickness BEIALMSISEISBE] the type of PVD coating (monolayer or multilayer coating)
(21](33][36][59)[601[61][62](63] 5 the substrate properties 6],

| 2. Resistance of PVD Coatings to Cavitation Erosion

The phenomenon of cavitation erosion consists in the degradation of the material surface as a result of multiple impacts of
micro-jets formed during the implosions of cavitation bubbles. Cavitation erosion resistance of materials is tested using
mainly ultrasonic devices compliant with the ASTM G-32 standard (Figure 1) [BUBSIESIESIEIEEIES] The ASTM G-32
standard allows performing tests in the direct and indirect methods (Figure 1). In the direct method, a tested sample is
fixed to a vibrating horn (Figure 1a), while in the indirect method the sample is stationary and is placed on the table/holder
opposite the vibrating horn (Figure 1b). Another test device used to test material resistance to cavitation is a cavitation
tunnel with a system of barricades (Figure 2) (23, There are many different cavitation tunnels, but most of them are
designed to study cavitation cloud. The cavitation tunnels allow performing tests at various test conditions, i.e., various
flowing liquid speed that affects cavitation intensity, which in turn affects erosion rate.

Cavitation intensity is defined as the energy of imploding cavitation bubbles released into the environment in a unit of
space and time 9. The observation of the cavitation cloud showed that it undergoes a quasi-periodic evolution, which
consists in the formation and growth of the cavity, the formation and development of the re-entrant flow and the collapse
of the cloud with the generation and propagation of the shock wave 971, puye to the unstable turbulent cavitation flow,
accurately determining the cavitation intensity is a problem. Nevertheless, some approaches have been proposed 32,
Most methods are indirect methods based on the cavitation pit analysis 874, |n case of cavitation tunnels, the flow
velocity controls the development of the cavitation cloud and can serve as a measure or indicator of cavitation intensity
[75], Recent studies have shown that slight change in the flow velocity strongly affects the duration of the incubation period
and the rate of cavitation erosion of bulk materials and the PVD coating [22I46l75] Thys, the test conditions associated
with the test device have an influence on the obtained test results.
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Figure 1. Schematic of the vibratory test devices for (a) testing in a direct method, 1: water inlet; 2: cooling bath; 3: sound-
proof chamber; 4: transducer; 5: horn; 6: specimen; 7: beaker; 8: water outlet; 9: ultrasonic generator, reprinted from
Ultrasonics Sonochemistry, Reference 23, with permission from Elsevier and for (b) testing in an indirect method,
reprinted from Wear, Reference (661 with permission from Elsevier.
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Figure 2. Cavitation chamber with a system of barricades, reprinted from Coatings, Reference 23, published in MDPI.

Monolayer Ti-based PVD coatings were the first PVD coatings widely investigated as protective coatings against
cavitation erosion 8. Tests carried out using an ultrasonic apparatus showed that PVD coatings increased incubation
period comparing to uncoated ball-bearing steel. In the case of TICN and TiN coating with thickness in the range 2.7-3.5
pUm, the incubation time increased to about 60,000 and 20,000 s, respectively, compared to 5000 s for uncoated bearing
steel. An increase in the incubation period was attributed to the high hardness and high compressive stresses.
Nevertheless, an increase in hardness and compressive stresses did not ensure the increase in incubation period. If
hardness of TiN coating increased from 24 to 38 GPa and compressive stresses from 600 MPa to 1.4 GPa incubation
period shortened to 15,000 s. While the TICN coating, which had higher hardness and comparable elastic modulus as TiN
coating, showed a better capacity for resistance to cavitation erosion than TiN coating. After the entire test, only a slight
increase in surface roughness and no significant damage was observed. Thus, hardness promotes, but does not
determine, an increase in resistance to cavitation erosion.

Additionally, investigations of about 42 pm thick NiCrAITi(N) and 4 um thick TiN coatings confirmed elongating incubation
period A8 However, not always elongation of incubation period was obtained. In some cases, a decrease in the
incubation period with a simultaneous decrease in the cumulative weight or volume loss of PVD coatings after the long-
lasting cavitation erosion test compared to that obtained for uncoated steel (an improvement of cavitation erosion
resistance) was noted (Figure 3) 2. The decrease in cumulative volume loss caused by PVD coating was noted in many
works, e.g., in References ZIBYIBLEZ However, some studies showed that the deposition of a hard PVD coating does
not always provide extended incubation time and/or improved resistance to cavitation damage 28IE7I7AE3] The 2.7 pm
thick TiN coating deposited on Ti6Al4V alloy had no incubation period and a very high erosion rate compared to the
uncoated substrate (Figure 4a) 84, Additionally, the 3.7 um thick TiN coating deposited at 500 °C on austenitic steel
decreased the resistance to cavitation erosion [, Lastly, the 3.7 um thick CrN/CrCN coating deposited on austenitic steel
increased the incubation period, but after this period the resistance to cavitation erosion decreased (Figure 4b) 48],
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Figure 3. Cavitation curves of 3.7 um thick Cr-N coatings deposited on X6CrNiTi18-10 stainless steel by means of the
cathodic arc evaporation method and uncoated stainless steel reprinted from Wear, Reference 24, with permission from
Elsevier.
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Figure 4. Cavitation curves of (a) 2.7 ym thick TiN coating deposited on Ti6Al4V alloy by means of an unbalanced
magnetron spattering method, reprinted from Journal of Alloys and Compounds, Reference 4, with permission from
Elsevier and (b) 4.3 pym thick CrN/CrCN coating deposited on austenitic steel by means of a cathodic arc evaporation
method, reprinted from Wear, Reference €, with permission from Elsevier.

A decrease in incubation period noted in Reference 2 was caused by the removal of micro-droplets created during
coating production. Micro-sized droplets are formed in the plasma due to micro-explosions and nearly always occur on the
surface of PVD coatings (48388 especially the ones produced using cathodic arc evaporation method 28887 pensity
and size of droplets depends on the deposition parameters 881899 TiN and CrN coatings deposited at 400 °C had about
40% higher density of droplets than those deposited at 200 °C 88, With increasing deposition pressure from 0.1 Pato 1.2
Pa, density of droplets decreased about 46% 9. An increase of bias voltage from —70 to =150 V also decreased droplets
density 2. Similar result, i.e., a decrease in droplet density with increasing bias voltage was obtained in Reference 22,

Because droplets are mostly metal droplets, they have different crystallographic structure than the surrounding coating. In
case of TiN coating, droplets have the hexagonal close-packed (hcp) crystal structure of a-Ti 52, while TiN coating has the
NaCl structure. The removal of droplets causes reduction of incubation period and leads to the formation of pinholes on
the coating surface that act as stress concentrators that initiate cracks [22l. For that reason they are treated as defects.
Development of cracks through pinholes in Cr-N coating is shown in Figure 5. Nevertheless, high density of tiny droplets
does not affect the resistance to cavitation erosion 22,
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Figure 5. Development of a crack thorough pinholes in 4 pm thick Cr-N coating deposited on X6CrNiTi18-10 austenitic
steel by means of a cathodic arc evaporation method (own investigations).

Studies performed using the cavitation tunnel revealed micro-undulation of 4 um thick TiN coating (Figure 6a) (251331,
Similar effect was observed in 3.78 pm thick NiTi coating tested using the indirect method in a vibratory test device (Figure
6b) 189 However, in some studies, which used the direct method in a vibratory test device, micro-undulation was not
observed [2477[95] The reason can be cavitation intensity and/or coating properties (stiffness/plasticity, adhesion and
thickness). According to Reference (28], as the thickness of the coating increases, the susceptibility of PVD coatings to
undulations decreases. This is connected with increasing compressive residual stress 2798l The residual stresses
depend on the deposition parameters, e.g., with increasing bias voltage from —40 to -85 V, compressive residual stresses
in 2 pm thick TizsAlssN coatings increased from —0.1 to —5.7 GPa at the depth of 0.5 pm 22,
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Figure 6. Undulation of (a) 3.6 pm thick TiN coating deposited on X6CrNiTi18-10 steel by means of a cathodic arc
evaporation physical vapor deposition (PVD) method, reprinted from Engineering Failure Analysis, Reference 24, with
permission from Elsevier and (b) 3.78 um thick NiTi coating produced on mild steel using the filtered arc deposition PVD
method, reprinted from Wear, Reference (891 with permission from Elsevier.

According to References [B4Z7BI92][94][100]101]  the gzhility of PVD coatings to resist cavitation erosion also depends on
the mismatch of the hardness and stiffness of the coating to the substrate (H/E and H3/E? ratios), the thickness of the
coating, as well as the adhesion of the coating to the substrate. As the resistance to plastic deformation increases, the
coating needs more impact energy to develop cavitation damage, so the resistance to cavitation erosion also increases
(241 For about 4 um thick TiN coatings, the resistance to cavitation erosion increases with increasing H/E ratio from 0.049
to 0.058 192 |n the case of about 3 pm thick NiTi/TiICN coatings, an increase in resistance to cavitation erosion was noted
for an increase in H/E ratio from 0.026 to 0.046 24, However, there are limit values of these parameters above which the
resistance to cavitation erosion decreases B8IZABLIO2] For 4 pm thick TiN coatings, the critical H/E ratio was about 0.065
(Figure 7) 22, TiN coatings with H/E ratio of about 0.078 had erosion rate similar to those with H/E ratio of about 0.55. An
increase in erosion rate is connected with the change of the degradation mode from ductile to brittle. In the brittle mode,
fracture requires less energy than in the ductile mode and therefore cracks develop very rapidly. This was the reason that
4 pm thick CrN/CrCN coating with H/E ratio of 0.102 had erosion rate higher than that of austenitic stainless steel
indicating on low resistance of the coating to cavitation erosion 8. However, 8% decrease in flow rate resulted in 24%
decrease of the erosion rate of the CrN/CrCN coating and about a 3-fold increase in duration of substrate protection by
the coating [23. Thus, a slight change in cavitation intensity (flow rate in flowing cavitation) caused an essential influence

on erosion rate. This showed that cavitation erosion rate is not only related to coating properties, but also to flow
conditions 1481751,
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Figure 7. Correlation between H/E ratio and mass loss in cavitation tests of 4 pm thick TiN coatings deposited on
X6CrNiTil8-10 steel by means of a cathodic arc evaporation PVD method, reprinted from Surface and Coatings
Technology, Reference 24, with permission from Elsevier.

The improvement in cavitation erosion resistance due to deposition of monolayer coatings motivated to investigate multi-
layer PVD coatings. Investigations of mono- and multilayer coatings of chromium and chromium nitride showed that
metallic 6 um thick Cr coating had better cavitation erosion resistance than 1.2 uym thick CrN coating and 7.2 pm thick
CrN/Cr coating, despite lower hardness (Figure 8) 192 |n addition, an increase in coating hardness had a slight effect on
the cavitation erosion resistance. The resistance to cavitation erosion of CrN coating with higher hardness was
comparable to that of CrN/Cr coating with lower hardness. Lack of correlation between PVD coating hardness and
cavitation erosion resistance was also obtained in Reference 4, in which NiCrAITi(N) coatings were tested. On the other
hand, in the case of 4 uym thick TiN/Ti coatings of various hardness, the resistance to cavitation erosion increased with
increasing coating hardness 2%, |n the case of chromium-based coatings 192, an increase in resistance to cavitation
erosion was related to adhesion. Additionally, in Reference 2, the cumulative weight loss decreased with increasing
coating adhesion. Such correlation was not noted in investigations of 4 pm thick TiN/Ti coatings 1931, Nevertheless,
comparing the results obtained in Reference 22 and Reference 193 the 4 um thick multilayer TiN/Ti coating had better
resistance to cavitation erosion than 4 pym thick TiN coating. This improvement was attributed to lower stiffness of the
multilayer coatings (lower H/E ratio) and the cushioning of cavitation impacts by soft metallic Ti layers. Investigations of
stress distribution in the coating under impacts showed a decrease in stress at the metallic interlayers 194, |n addition, the
resistance to plastic deformation represents better than hardness alone coating the ability to resist cavitation erosion.
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Figure 8. Cavitation curves of 6 pm thick Cr coating deposited on AISI 4140 steel by commercial electroplating using
Atotech HEEF 25 as a catalyst, 1.2 ym thick CrN and 7.2 pym thick CrN/Cr coatings deposited on AISI 4140 steel by
means of a cathodic arc evaporation PVD method, reprinted from Surface and Coatings Technology, Reference 192, with
permission from Elsevier.

Investigations of the resistance of Ti-Si—-C—N and Ti/Ti—-Si—C—-N coatings with thickness in the range from 36 to 68 ym
deposited on 2Crl3 steel to cavitation erosion in corrosion aggressive medium (3 wt.% NacCl solution) showed that the
thickness of coatings had higher impact on the resistance than coating structure (mono- or multi-layer coating) in
opposition to the results obtained in distilled water 23, In distilled water, the best resistance to cavitation erosion was
found in the thinner coating, while in 3 wt.% NacCl solution—the thickest coating. The multi-layer structure of the coating
improved the resistance only in the distilled water. Despite many studies, there is still a need to search for factors
Referenges resistance of PVD coatings to cavitation erosion.
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Figure 18. Wear rate of 2.5-3 pm thick TaN coatings deposited on WC-Co substrate using the reactive magnetron

sputtering technique, and wear volume of steel balls, reprinted from Tribology International, Reference 1341 with

permission from Elsevier.

Investigations of the material of a ball (SisN4 with hardness of 15 GPa, Al,O3 with hardness of 16 GPa, steel with

hardness of 7 GPa), sliding speed (5 and 10 cm/s) and load (5 and 10 N) on wear rate of 4 um thick TiN coating with

hardness of 26 GPa showed that the wear rate decreased as load and sliding speed increased (Figure 19) 234, The



lowest wear rate was obtained for the steel ball with the lowest hardness and the lowest elastic modulus, and the highest
for the alumina ball with the highest hardness and the highest elastic modulus. The reason was the contact pressure
generated on the surface of TiN coating. For the alumina ball, the contact pressure was the highest and for the steel ball
was the smallest. Load and sliding speed also influenced CoF. In case of the SisN4 and steel balls, with increasing contact
pressure and sliding speed, CoF decreased. Different results were obtained for the alumina ball, CoF increased with
increasing sliding speed, but decreased with increasing contact load. In the case of tests conducted with the Al,O3 ball,
the wear rate decreased as sliding speed increased from 5 cm/s to 10 cm/s than although CoF increased. These studies
show very well that CoF does not determine wear rate. The difference in the obtained results follows degradation
mechanism. In the case of SisNs and Al,O3 balls, damages of TiN coating were typical for polishing. While, the
degradation of TiN coating caused by steel ball was mainly due to adhesive and abrasive wear.
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Figure 19. Wear rate (a) and coefficient of friction (b) of the systems 4 uym thick TiN coating deposited on AISI 440C steel
by means of the arc ion plating technique—SisN4, Al,O3 and steel balls, reprinted from Tribology International, Reference
137 with permission from Elsevier.

Investigations of the effect of temperature showed that CoF and wear rate of the 3 pm thick AICrN coating with hardness
of 30.6 GPa was depended on material of the ball that was made from SisN4 (hardness: 15 GPa), Al,O3 (hardness: 15
GPa), and ZrO, (hardness: 10.5 GPa) (Figure 20) 123, |n the case of a zirconia ball, high wear rate was caused by low
hardness and low thermal conductivity. However, CoF was lower than in case of the Al,O3 ball, that had much lower wear
rate. In addition, increasing CoF did not cause an increase in wear rate. An increase in sliding temperature caused
different change in CoF and wear rate depending on the ball. In the case of Al,O3 ball, CoF and wear rate decreased,
while for zirconia ball—increased. These changes were related with hardness and thermal conductivity of the balls.
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Figure 20. Coefficient of friction and wear rate of the systems 3 ym thick AICrN coating deposited on high temperature
oxidation resistant stainless steel (EN 1.4835) by means of the arc ion plating technique—AlI,O3 and ZrO, balls, reprinted
from Tribology International, Reference (125 \with permission from Elsevier.

Comparison of the wear rate of the 4-um-thick TiAIN monolayer coating and the 4-um-thickTi-Al-Mo-N multilayer coating
with alternating layers of Ti and Mo enriched nitride showed higher wear resistance (lower wear rate) of the multilayer
coating 241, Also investigations of CoF and life of tools with 5 um-thick TiN/TiC, TiN and TiC coatings showed a lower
friction coefficient and about twice the life of tools with the multilayer coating compared to the monolayers 238, |n the case
of CrN and CrN/CrCN coatings with different content of carbon and thickness in a range from 1.27 pym to 1.96 pm that was
depended on the C,H, flow rate, the CrN/CrCN multilayer coatings had lower CoF than CrN monolayer coating 129, |n
addition, CrN/CrCN coating that had the lowest CoF (0.49) also had the lowest wear (the width of the wear track was 126
pm). Although with increasing CoF increased the wear, this relation was not too rigid. CrN/CrCN coating produced at the
C,H, flow rate of 30 sccm had lower CoF (0.63) than CrN coating (0.69), but higher wear: the width of the wear track was
180.9 ym and 171.5 pym, respectively. Better wear resistance of the multilayer coating compared to the monolayer have
been obtained testing CrN and DLC coatings with or without FezAl-based interlayer 2391, Similar results of wear resistance
of the multilayer coatings have been also obtained in References [131140](141]

The wear resistance of multilayer PVD coatings depends on the coating structure. Deposition of 2.4 pym thick CrCN/CrN
coatings with 400 nm thick module and the ratio of layer thickness in the module being 1:1 on planer knives made of HS6-
5-2 steel allowed increase lifetime by 42% I3l Comparison of 2.9 pym thick CrCN and CrN/CrCN multilayer coatings
showed that the wear depth and wear rate of the CrCN monolayer coating was about 2-5 times higher than that of the
CrCN/CrN multi-layer coating in the same test conditions 249, An improvement in resistance to the wear of the CrCN/CrN
coating has been connected with the good adhesion of 125 N obtained in a test performed using a commercial scratch
tester (Revetest, CSEM), the adhesion of CrCN monolayer coating was 80 N, the thickness of the harder CrCN layer in
the bilayer, and the thickness and number of bilayers in the coating. The better the adhesion, the better the resistance to
the wear. With increasing number of bilayers in the coating the adhesion increased. However, increasing thickness of the
CrCN layer in the bilayer caused a decrease in coating adhesion. Such correlation of wear resistance with adhesion was
not confirmed for TiN coating with thickness of 0.8 pm and TiN/TIAISIN coatings with thickness in a range from 2 um to 4
pm, which were also obtained by a scratch tester (Revetest, CSEM) 42 The TiN + multiTiIAISIN + TiN coating that had
the highest adhesion (Lc = 22.4 N) had slightly better wear resistance than the TiN + TiAISIN + AISIiTiN coating with the
lowest adhesion (L¢c = 18.3 N).

The study on the influence of the layer thickness of the multilayer coating on the wear resistance showed that the wear
rate decreases with the decrease of the layer thickness 124111431 For example, TiN/Ti coating with a total thickness of 1.2
pm and a layer thickness of 20 nm had about 50% less wear than TiN/Ti coating with the same total thickness and a layer



thickness of 100 nm. In the case of TiN/CrN coatings with a total thickness of 1.4-1.6 ym, a decrease of a layer thickness
from 100 nm to 20 nm caused about 40% reduction in wear. In the case of 4 pym thick Ti-Al-Mo-N coatings with a
modulation period of about 80 nm, in contrast to TIAIN monolayer coating with the same thickness, no wear was observed
after the entire tribological tests, regardless the test temperature.

According to References 1271141l 5 decrease in wear resistance in metallic-ceramic multilayer coating is related to the
content of soft metallic phase in the coating. In case of 3 pm thick TiN/Ti coatings, an increase in the content of soft
metallic Ti phase (an increase in Ti layer thickness from 10 nm to 150 nm) caused a decrease in the hardness (from 32
GPa to 20 GPa) and elastic modulus (from 330 GPa to 297 GPa) of the coating and increases the wear rate (from about 2
x 1078 mm3/Nm to 8 x 107> mm?3Nm) 241, |n addition, the wear rate of an alumina ball used as a counterpart also
increases. Investigations of an influence of metallic Ti content in TiN/Ti coating showed that with increasing metallic Ti
phase up to 50%, hardness decreased from about 2200 HV for TiN coating to about 950 HV and the wear rate increased
from about 250 pm3/mmN to 400 pm3/mmN 227, An increased content of Ag and Cu in TIAIN(Ag,Cu) coatings (from 11%
to 20%) caused a decrease in hardness (from 15.2 GPa to 6.7 GPa) and elastic modulus (from 216.4 GPa to 140.7 GPa).
However, CoF and wear also decreased from 0.31 to 0.1 and from 2.2 x 107 mm?3 to 1.6 x 10~* mm?3, respectively 133,
Thus, the wear resistance was improved.

Despite the thickness of each layer, the thickness of bilayers also plays an essential role in wear resistance of multilayer
coating. Investigations of CrN/CrCN coatings showed that the thinner the bilayer, the better the wear resistance 149,
Comparable results of an effect of bilayer thickness were obtained in testing TiN/Ti, Ti-Al-Mo-N and TiN/CrN multilayer
coatings with nanometric layer thickness [X4I143] The wear decreased with decreasing bilayer thickness. This is
connected with increasing number of layer boundaries, which affect stress distribution and crack development. However,
this correlation was not confirmed in TIAIN/W,N coatings 29, The reason was decreasing adhesion of the coatings with
decreasing thickness of bilayers.

PVD coatings, especially produced by the cathodic arc evaporation technique, have many defects in the form of micro-
droplets and craters (281144 Taple 1 shows that the deposition of the PVD coating increases the surface roughness,
regardless of the deposition technique. According to Reference 22, along with roughness increase, CoF increases as
well. Tribological tests of 5 ym thick (Cr,Al,Mo)N, 3 pym thick (Cr,Al,Cu)N and 3.5 pm thick (Cr,Al,Mo,Cu)N coatings
deposited on hardened steel AISI5115 (16MnCr5E) with hardness H = (60 + 2) HRC, AICrN and CrWN coatings deposited
on 30CrMo6 steel with a hardness of 440 + 1 HVqo; showed that during initial stage of testing the reduction of CoF
occurred 8811451 This reduction depended on the contact force, sliding velocity, lubricant, material of ball used as a
counterpart, temperature of testing and the coating. In case of AICIN coating, the reduction of CoF was about 30% [145],
While, in case of (Crz7AlsgMo13)N coating, the reduction of CoF was even about 80% for low viscosity lubrication oil LVO,
the counterpart made from 100Cr6, the sliding velocity of 0.1 m/s, Hertzian pressure of 1400 MPa and temperature of 80
°C (881, When the lubricant and the material of a ball was changed to a mineral base oil and SigN,, the reduction was only
about 20%. Based on Reference 1441, the decrease of friction coefficient occurs due to removal of droplets and formation
of craters. Since polishing also causes the removal of micro-droplets from the PVD coating surface, it has been used to
reduce CoF in (Ti,Al)N-(Al,Cr),03 coatings 3. The reduction in surface roughness by almost 60% was accompanied by a
decrease in CoF by about 50%. It should be highlighted that low surface roughness does not always mean low CoF (Table
1). Regardless of the tribological test conditions, the AICrN coating had lower friction coefficient than CrWN coating,
despite higher surface roughness 1421,

Table 1. Surface roughness and CoF of PVD coatings.

i Coating Substrate
) Technique of
Coating Substrate . Roughness Roughness CoF Reference
Deposition
(Ra [um]) (Ra [um])
high speed
Cr-N gn sp Arc evaporation 0.1 +1.06 0.05 - (81

steel



CrN

CrN

Cr55Si1,30N

Cr468i2_eCN

CI’43Si3.4CN

CrN/CrCN

CrCN/CrN

AICrN

AITIN

TiN

17-4 PH
stainless steel

cemented
carbide (10
wt.% Co, 90
wt.% WC)

17-4 PH
stainless steel

17-4 PH
stainless steel

17-4 PH
stainless steel

X6CrNiTi 18-10
stainless steel

HS6-5-2 steel

cemented
carbide (10
wt.% Co, 90
wt.% WC)

cemented
carbide (10
wt.% Co, 90
wt.% WC)

AlSI 316

Plasma
enhanced
magnetron
sputtering.

multi-arc ion

plating technique

Plasma
enhanced
magnetron
sputtering.

Plasma
enhanced
magnetron
sputtering.

Plasma
enhanced
magnetron
sputtering.

Cathodic arc
evaporation

Cathodic arc
evaporation

Multi-arc ion

plating technique

Multi-arc ion

plating technique

Cathodic arc
evaporation

0.015

0.21

0.008

0.017

0.013

0.255 £ 0.05

0.1+1.06

0.12

0.14

0.64 £0.22

0.004

0.04

0.004

0.004

0.004

0.02

0.02

0.04

0.04

1.133+0.35

0.81

0.8

0.71

0.91

0.67

0.75

0.82
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TIAIN

TIAISIN

TiCrAISiN

TIAIN
(Ag,Cu) 11
at.%

TiAIN
(Ag,Cu) 16
at.%

TIAIN
(Ag,Cu) 17
at.%

TIiAIN
(Ag,Cu) 20
at.%

TIAIN/W,N
modulation
period 680
nm

TIAIN/W,N
modulation
period 373
nm

TIAIN/W,N
modulation
period 256
nm

TIAIN/W;,N
modulation
period 197
nm

AISI 420

AlSI 316

AISI 316

AISI 420

AISI 420

AlSI 420

AISI 420

AISI 304l

AISI 304l

AlSI 304l

AISI 304l

Magnetron
sputtering

Cathodic arc
evaporation

Cathodic arc
evaporation

Magnetron
sputtering

Magnetron
sputtering

Magnetron
sputtering

Magnetron
sputtering

Multi-arc ion
plating and
magnetron
sputtering

Multi-arc ion
plating and
magnetron
sputtering

Multi-arc ion
plating and
magnetron
sputtering

Multi-arc ion
plating and
magnetron
sputtering

0.1135

0.61+0.08

0.622 £ 0.33

0.176

0.228

0.425

0.538

0.436

0.349

0.327

0.319

0.050

1.133+0.35

1.133+0.35

0.050

0.050

0.050

0.050

mirror polished

mirror polished

mirror polished

mirror polished

0.8

0.31

0.28

0.25

0.1

0.78

0.73

0.80

0.81
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. AISI 3041 0.295 mirror polished 0.81

period 140 magnetron

nm sputtering

In previous section it was shown that resistance to erosion was related to the resistance to plastic deformation (H/E and
H3/E? ratios). Leyland and Matthews have proposed using the H/E ratio in wear control 148l They have suggested that a
high H/E ratio is a reliable indicator of a good abrasion resistance of a coating. Investigations of TiN-AI/TIN, TiN—
AITIN/SIN, CrTiN-AITIN-AITICrN/SIN coatings confirmed that the wear resistance increased with H/E ratio 1471 The best
wear resistance was achieved by the coating with the highest H/E ratio. Additionally, in References 129139 there was
shown that the higher the resistance to plastic deformation, the lower the wear rate. However, not all investigations
confirm this relationship. The tribological test of TiAIN, TiAISIN, CrN/TIAICrSiN and CrN/CrCN/DLC coatings showed that
no correlation between H/E or H3/EZ2 ratio and the wear resistance 128l Similarly, the tests of TiAIN(Ag,Cu) and
AINITiISIB(N) coatings did not confirm this relationship 13311249 | ack of such correlation was also noted in Ref [134],

| 5. Summary

As the PVD method gives a great opportunity to modify the properties of the produced coatings, these coatings are tested
as anti-wear and anti-erosion coatings and used in several applications. They should be resistant to such damage
processes as: dynamic fracture in micro-volumes, fatigue in micro-volumes and corrosion. Their protective properties
(incubation period, rate of erosion/wear) depend on the composition and structure of the coating, the properties of the
substrate, the method and conditions of deposition, and the test/operating conditions of the coating. Increasing the
duration of incubation, decreasing the cumulative mass or volume loss, and reducing the erosion rate are indicative of
increased anti-erosion properties of PVD coatings.

Numerous investigations showed that PVD coatings increase incubation period and decrease erosion rate in cavitation
and solid particle erosion tests. The improvement of resistance to cavitation and solid particle erosion depends on
hardness, elastic modulus and adhesion of the coating, stresses in the coating, as well as hardness, elastic modulus and
plastic properties of the substrate, and also impact velocity. Thus, the resistance of PVD coatings to mentioned
degradation processes depends on many factors. The most important are hardness, adhesion and the resistance to
plastic deformation (H/E or H3/E? ratios). Nevertheless, hardness promotes, but does not determine, an increase in
resistance to cavitation erosion. Some investigations show that coatings with very high hardness have lower resistance to
cavitation or solid particle erosion than coatings with lower hardness. Such case was noted in testing 3 ym thick TiN
coatings deposited on ball-bearing steel with hardness of 24 and 38 GPa. Similar results have been obtained in the
tribological tests in searching wear rate of TIAIN(Ag,Cu) or TaN coatings. TIAIN(Ag,Cu) coating with hardness of 15.2 GPa
had 37.5% higher wear volume than TiAIN(Ag,Cu) coating with hardness of 6.7 GPa. TaN coating with hardness of 36.5
GPa had higher wear rate than TaN coating with hardness of 30 GPa. Thus, it should be emphasized that an improperly
selected coating, e.g., due to an inadequate literature review or the lack of own research, may shorten the incubation
period and/or increase the erosion/wear rate. Table 2 summarizes the degradation rate of the PVD coatings.

Table 2. Degradation rate of PVD coatings.
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Since the deformation capacity of the material depends on the hardness and modulus of elasticity, it has been proposed
to use the ratio of hardness and modulus of elasticity, which has been called resistance to plastic deformation. By
determining the correlation of the resistance to plastic deformation (H/E or H3/E? ratios) with the erosion rate, it can be
seen that there is an optimum value of the ratio at which the PVD coating obtains the best resistance to cavitation erosion
or solid particle erosion. Initially, the increase in resistance to plastic deformation is accompanied by an increase in
resistance to erosion due to the need to increase the impact energy to initiate and develop damage. However, in case of
high resistance to plastic deformation, the change of the degradation mode from ductile to brittle occurs and an increase
in erosion rate is observed. This is because fracture requires less energy in the brittle mode than in the ductile mode.
Thus, coatings with high resistance to plastic deformation become stiff with little susceptibility to deformation. The impact
energy needed for crack initiation and its development is low. In the case of cavitation erosion, the optimal value of the
H/E ratio depends on the flow velocity in flow cavitation and the thickness of the coatings. For the flow velocity resulting
from the inlet pressure of 1000 kPa, the outlet pressure of 130 kPa, the 5 mm gap width in the cavitation tunnel with a
barricade system and a TiN coating thickness of 4 um, the optimal H/E value is around 0.065. In the case of solid particle
erosion, the optimum value of the resistance to plastic deformations depends also on the impact angle and the properties
of erodent particle (shape, size and hardness). For sharp-edged SiC particles with a size of 212-300 um, an impact



velocity of 8 m/s, a normal angle of impact and a coating thickness of about 6 um, the optimal H/E value is about 0.055. In
the case of tribological wear, many factors affecting the relationship between the H/E ratio and the wear rate mean that
the rule obtained in cavitation and solid particle erosion is not recorded. Many tests show the higher the H/E ratio the
better the wear resistance. However, not all investigations confirm this rule. In some cases, no correlation between H/E or
H3/E? ratio and the wear resistance has been obtained. The wear resistance of TiIN-AI/TiN, TIN-AITiN/SiN, CrTiN-AITiN—
AITICrN/SiN coatings increased with H/E ratio, but no correlation between H/E or H3/E? ratio and the wear resistance was
obtained for TiAIN, TIAISIN, CrN/TIAICrSIN, TiAIN(Ag,Cu) and AINiTiSiB(N) coatings.

The protective properties of PVD coatings depend on the coating structure, which affect the stress distribution and the
development of cracks. The multilayer coatings, in general, have better resistance to erosion and wear than the
monolayer coatings. In the case of multi-layer metal-ceramic coatings, e.g., in TiN/Ti coating, high tensile stresses arise in
the TiN layers, while in the metallic interlayers there is a significant decrease in interfacial axial stress. As a result, the first
cracks are initiated in the TiN layers. With increasing thickness of the ceramic TiN layers the erosion resistance
decreases. Stiff TiN layers have low deformation capacity and dynamic impact causes shear cracking, while soft Ti layers
remain undamaged. This is because the metallic layers absorb more of the impact energy on elastic deformation, thus
improving the resistance. However, in the aquatic environment there is a risk of their corrosion, which can contribute to
accelerated deterioration of the multilayer coating. In the case of ceramic—ceramic coatings, there is no risk of corrosion
and the compressive residual stresses are present in both ceramic layers, although they are not the same. The protective
properties depend on coating and substrate stiffness and loading conditions. In solid particle erosion, TiN/ZrN multilayer
coating impacted by quartz sand particles with a velocity of 100 m/s had 15.5 times lower erosion rate than that of the
uncoated substrate. In flowing cavitation, the resistance of CrN/CrCN coating depends on the liquid flow rate. The 8%
decrease in flow rate resulted in a 24% decrease of the erosion rate and about a 3-fold increase in substrate protection
time. In tribological tests, there was also obtained that thickness and number of bilayers in multilayer coatings determine
their wear rate. The thinner the bilayer, the better the wear resistance. CrCN/CrN coatings with 400 nm thick module and
the ratio of layer thickness in the bilayer being 1:1 have about 2-5 times lower the wear depth and wear rate than the
CrCN monolayer coating. This result is in contradiction with the results obtained in the cavitation erosion tests, in which a
higher erosion rate was obtained for the finer bilayer.

As PVD coatings increase the surface roughness, it affects the coefficient of friction. The increase in surface roughness is
usually accompanied by the increase in CoF. However, low surface roughness does not always mean low CoF. The AICrN
coating compared to CrWN coating has lower CoF despite higher surface roughness. During initial stage of testing the
reduction of CoF is observed. This reduction is caused by the removal of droplets and formation of craters on the coating
surface. The decrease in CoF is often accompanied by a decrease in wear rate, but no correlation between them is
recorded. In addition, in case of some investigations, an increase in CoF was accompanied by a decrease in the wear
rate. Moreover, there is no correlation between CoF and wear rate (Tables 1 and 2). Thus, low CoF does not determine
low wear rate. Although many investigations showed that the lower the surface roughness, the lower the CoF and the
lower the wear rate. However, there are also many exceptions to this rule.

Despite the identification of the main relations between the coating properties and its resistance to erosion and wear
processes, there is still a need for providing research due to many exceptions. The results obtained depend on the
research conditions, the mismatch between coating and substrate properties. The increasing requirements for the
reliability of the elements on which the coatings are applied necessitate the elaboration of new coatings, which should be
tested experimentally due to numerous exceptions to the obtained dependencies.



