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Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues,

predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the

DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly

mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new

knowledge, disease models, and technical tools, much progress has been made in the discovery of altered

pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. 
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1. Introduction

Myotonic dystrophy type 1 (DM1) is caused by an unstable expanded CTG repeat located within the 3′

untranslated region (3′ UTR) of the DMPK gene. The molecular mechanisms of DM1 are mainly the consequence

of accumulation of mutant DMPK transcripts into ribonuclear foci leading to the impairment of alternative splicing

and normal gene expression. Cell and animal models of DM1 have been crucial to providing insight into disease

mechanisms and to revealing new therapeutic targets. 

2. Myotonic Dystrophy Type 1: Clinical Features and
Pathogenetic Mechanisms

DM1 is the most common dystrophy in adults, having an estimated worldwide prevalence of 1:20,000, with a recent

report of 4.76:10,000 for DMPK CTG expansion ≥50 CTG repeats in a newborn screening program in New York

State, USA . Clinical features of DM1 (Steinert’s disease, OMIM# 160900) include muscle weakness, dysphagia,

neuromuscular respiratory insufficiency, cardiac complications and cognitive, intellectual or behavioral impairment

as well as sleep disorders. In the most severe forms, life quality and expectancy are seriously compromised .

DM1 results from CTG-repeat expansions in the 3′ UTR of the DMPK gene on chromosome 19 . The disease

severity and age of onset are broadly correlated with the number of CTG repeats, with the highest (over 750) in the

congenital form, while in non-affected individuals the number of repeats is up to 35 . The number of repeats is

usually unstable and tends to increase in some body tissues during lifetime (somatic instability) as well as in
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successive generations, leading to the phenomenon called “anticipation”, where children of DM1 patients have a

higher repeat number and more severe phenotypes compared to their parents . Interestingly, in DM1 families with

variant repeats, where GGC, CCG and CTC interruptions are present within the CTG-repeat array, the repeats are

stabilized and the disease phenotypes are milder . Several pathogenic mechanisms likely contribute to disease

in DM1 (Figure 1) . At the DNA level, epigenetic modifications may impact the development or severity of the

phenotype in DM1 patients . In DM1 patient-derived cells and in a DM1 mouse model, the hairpin-like structures

of the repeats can induce chromatin changes, such as CpG methylation, resulting in haploinsufficiency

of DMPK and neighboring genes, or cause replication-fork stalling during DNA duplication, leading to cell stress 

. Large experimental evidence supports the hypothesis of an RNA gain-of-function mechanism of the

mutated DMPK transcript. CUG-containing RNAs sequester crucial nuclear factors of the muscleblind-like (MBNL)

family into ribonuclear foci, thus preventing their normal functions that are mainly associated with the regulation of

alternative splicing . Splicing regulation is required for the proper development and maintenance of tissues in

which the DMPK gene is highly expressed, such as in muscle and the nervous system . The MBNL family and

the CUGBP Elav-like family (CELF) are among the most important splicing regulators in skeletal and cardiac

muscle, and act antagonistically on several pre-mRNA targets . Nuclear retention of MBNL proteins in nuclear

foci prevents pre-mRNA processing and export to the cytoplasm, leading to a decrease in protein translation, and

the loss of functional MBNL1 is accompanied by CELF1 upregulation . The increase in CELF1 levels is induced

by protein-kinase-C (PKC)-mediated hyperphosphorylation, leading to protein stabilization . Both sense and

antisense repeated RNAs have been shown to contribute to the clinical phenotype of nucleotide-expansion

diseases . An antisense transcript emanating from the DMPK-adjacent SIX5 regulatory region spanning the

CTG expansion was first identified in DM1 patient-derived cells. The transcript was shown to be converted into

siRNAs, which are able to recruit DNA and histone methyltransferases, leading to heterochromatin formation .

Interestingly, in transgenic mice carrying the human DMPK locus, in addition to CUG-containing transcripts, CAG-

containing transcripts were also found to form distinct ribonuclear foci .
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Figure 1. DM1 pathogenetic mechanisms and therapeutic strategies. The actions of molecular therapies for DM1

at different pathogenetic levels are illustrated: (1) at DMPK gene, drugs can inhibit CTG-repeat transcription and

induce repeat contraction; ZFN, TALEN or CRISPR/Cas9 nucleases can modify gene sequence by inducing CTG-

repeat contractions or deletions, or by inserting premature polyadenylation signals; (2) mutated DMPK mRNA can

be functionally inactivated by drugs inducing degradation or binding to CUG repeats; (3) MBNL can be released

from CUG repeats by disruption of MBNL:CUG interaction through competitive binding, and CELF levels can be

regulated by protein kinase C and glycogen synthase kinase 3β; (4) altered signaling pathways downstream of

DMPK transcript can be rescued by modulation of splicing and miRNAs; circRNAs and RAN translation could also

be targets of future therapies.

Other mechanisms involved in DM1 pathogenesis are repeat-associated non-ATG (RAN) translation (reviewed in

), which results in the production of toxic protein aggregates containing polyglutamine from antisense CAG-

repeated transcripts , microRNA (miRNA) dysregulation , and upregulation of circular RNA

(circRNA) expression . In addition to the ones described above, other signaling cascades are affected by

the toxic DMPK RNA and may play important roles in DM1 pathogenesis. For example, MBNL and CELF

regulators, besides being key splicing regulators, are likely involved in cytoplasmic pathogenetic processes altering

proteostasis and sarcomere structure (reviewed in ). Omics studies have added new information to the previous
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knowledge, revealing several alterations in gene expression, alternative splicing, CpG methylation and proteins

levels that potentially contribute to DM1 pathogenesis. In perspective, these new approaches can be crucial to

evaluate the degree of therapeutic rescue and the off-target effects of drug candidates (reviewed in ).

3. DM1 Cell and Animal Models

In vitro models of DM1 have greatly contributed to clarifying the pathogenetic mechanisms of the disease. Among

these, there are engineered cell lines with CTG repeats of different lengths inserted in minigenes , DM

patient-derived primary myoblasts, immortalized myoblasts or MYOD1-converted fibroblasts , and

embryonic stem cells . Additionally, induced pluripotent stem cells (iPSCs) and iPSC-derived distinct cell types

were used to study tissue-specific DM1 pathological alterations . Recently, the first 3D in vitro human-

muscle model of DM1 was developed by encapsulating patient-derived MYOD1-converted fibroblasts in hydrogels

. All of these cell models reproduce molecular alterations typical of DM1 and have been very useful for

discovering crucial molecules and cellular pathways involved in the disease and for testing therapeutic strategies.

Drosophila models have also been used by several groups to study DM1. Interrupted CTG repeats of various

lengths driven by either constitutive or inducible promoters were expressed in flies and DM1-related molecular as

well as phenotypic alterations were observed in flies carrying more than 480 repeats . Although DM1

modeling is complicated by the multifaceted impact of the DM1 mutation, many DM1 mouse models have been

generated over time through the silencing of the Dmpk gene or the Mbnl family genes; alternatively, mouse models

expressing CELF proteins or toxic CTG repeats in various tissues were produced, in order to mimic the different

aspects of the disease and to discover therapeutic molecules (Table 1). It is unclear whether

the DMPK haploinsufficiency observed in DM1 patients may affect functions of the tissues in which the gene is

normally highly expressed, such as muscles and the central nervous system (CNS). To address this question,

different Dmpk-knockout (KO) mouse models have been generated and characterized through the years with

different results. Initial reports on Dmpk-KO mice described cardiac conduction defects  and mild myopathy .

Since these mice models were characterized by a mixed genetic background possibly leading to confounding

effects, more recently a Dmpk-KO model backcrossed to two different pure genetic backgrounds was generated.

This model did not confirm the previous observations, but showed that Dmpk gene deletion does not compromise

cardiac or skeletal-muscle function . Additionally, DMPK transcript silencing through antisense oligonucleotides

(ASOs) was well tolerated in mice, rats and monkeys . These findings suggest that reduction

in DMPK expression should not be a prominent cause of the disease. Given the crucial regulatory role of MBNL

proteins in DM1, different Mbnl KO models were generated to elucidate the role of each MBNL protein in the

disease. Mbnl1 and Mbnl2 loss of function resulted in muscular and CNS symptom manifestation, respectively 

, while Mbnl3 KO caused a progressive delay in muscle regeneration and embryonic muscle differentiation

abnormalities, in agreement with their expression profiles during development . Mice with

double Mbnl1/Mbnl2 KO or Mbnl1/Mbnl3 KO exhibited more severe phenotypes compared with the single KO 

 and the triple Mbnl1/2/3 KO in muscle tissues recapitulated the severe phenotype observed in congenital DM1,

in both newborn and adult mice , supporting the idea of a prominent role of MBNL proteins and alternative
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splicing dysregulation in DM1 pathogenesis. To determine the role of CELF proteins in DM1 pathogenesis, mouse

models overexpressing CELF1 and CELF2 in skeletal and/or cardiac muscle were generated .

Overexpression of CELF1 was shown to reproduce DM1-associated histopathological and functional changes .

Notably, CELF1/2 overexpressing mouse models have revealed a strong pattern of antagonistic regulation of

mRNA levels by CELF and MBNL proteins through competitive binding to 3′ UTR regions  (Table 1A).

Table 1. DM1 mouse models used for studying pathogenetic mechanisms and/or molecular therapies.

[62][63][64][65]

[63]

[64]

(A) Knockout and Overexpressing Models

Mouse Model Generation Strategy DM1-Like
Features Limitations Research

Application Ref

DMPK Dmpk KO via replacement of 5′-UTR and
exons 1-7 with hygromycin cassette

Late-onset mild
myopathy and

altered
Ca  homeostasis

Mild phenotype;
possible

confounding
insertional effects
on flanking genes;

mixed genetic
background

Relevance of
absence of DMPK

protein to DM1
phenotype

DMPK Dmpk KO via replacement of 5′-UTR and
exons 1-7 with neomycin cassette

Late-onset mild
myopathy;

decreased force
generation;

altered
Na  currents in

skeletal muscles;
cardiac

conduction
defects

Mild phenotype;
possible

confounding
insertional effects
on flanking genes;

mixed genetic
background

Relevance of
absence of DMPK

protein to DM1
phenotype

DMPK Dmpk KO via replacement of 5′-UTR and
exons 1-7 with hygromycin cassette

No phenotype
Failure to

replicate the DM1
phenotype

Relevance of
absence of DMPK

protein to DM1
phenotype

Mbnl1 Mbnl1 KO via targeted deletion
of Mbnl1 exon 3

Mild myotonia
and myopathy

(centralized
nuclei, split

fibers); heart
conduction

defects;
progressive

cataracts; AS
alterations

Mild muscle
phenotype; mild
brain alterations;

limited
spliceopathy

Evaluation of
MBNL1 splicing

regulation to DM1
phenotype

Mbnl2 Mbnl2 KO via targeted deletion
of Mbnl2 exon 2

Development of
several CNS

Failure to
replicate the DM1

Evaluation of
MBNL2 splicing

-/-

++

[52][66]

-/-
+

[51][67]

-/- [53]

ΔE3/ΔE3 [56][57]

ΔE2/ΔE2 [55]
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alterations (REM
sleep propensity,
deficit in spatial

memory,
decreased
synaptic

plasticity), AS
alterations

muscular
phenotype

regulation to DM1
phenotype

Mbnl3 Mbnl3 KO via targeted deletion
of Mbnl3 exon 2 (X-linked)

Progressive delay
in muscle

regeneration;
abnormalities in

embryonic
muscle

differentiation
leading to
neonatal
hypotonia

Possible
compensation by
MBNL3 truncated
isoform or other

MBNl family
members

Evaluation of
MBNL3 contribution
to DM1 phenotype

Mbnl1 ;
Mbnl2 ;
Myo-Cre

Mbnl1 KO; skeletal-muscle specific Cre-
mediated Mbnl2 KO

Small size at birth
and skeletal

abnormalities;
myopathy and
severe motor
deficits; AS

alterations also in
brain tissues

High neonatal
mortality and

reduced lifespan

Evaluation of
MBNL1 and MBNL2
contribution to DM1

muscular
phenotype

Mbnl1 ;
Mbnl3

Mbnl1 and Mbnl3 KO via targeted deletion
of Mbnl1 exon 3 and Mbnl3 exon 2

Myotonia and
myopathy;

reduction in
muscle strength;
chloride currents

alteration; AS
alterations;
translation

defects

AS alterations
similar

to Mbnl1 single
knock out; lack of
brain alterations

Evaluation of
MBNL1 and MBNL3
contribution to DM1

phenotype

Mbnl1 ;
Mbnl2 ;
Mbnl3 ;

Myo-Cre

Mbnl1 KO; muscle-specific Cre-
mediated Mbnl2 and Mbnl3 KO

Severe congenital
myopathy and
spliceopathy,

severe respiratory
difficulties and

muscle wasting in
adults; gene
expression
changes

High neonatal
mortality and

reduced lifespan

Evaluation of all
MBNL proteins loss
contribution to DM1

muscular
phenotype

MCKCUGBP1 Insertion of human CELF1 transgene
under striated-muscle-specific MCK

mouse promoter

Chains of central
nuclei in

myofibers,
increased NADH

Neonatal lethality
in mice

expressing high
levels of CELF1

Contribution of
CELF1

overexpression to

ΔE2 [58]

ΔE3/ΔE3

C/C

+/-

[60]

ΔE3/ΔE3

ΔE2
[59]

ΔE3/ΔE3

C/C

C

+/-
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reactivity,
degenerating
fibers and AS

alterations

DM1 muscular
phenotype

TRECUGBP1
Insertion of Tet-responsive

human CELF1 transgene; heart-specific
rtTA expression

Left ventricular
systolic

dysfunction and
dilatation, AS

alterations

DM1-like
phenotype limited
to heart defects

Contribution of
CELF1

overexpression to
DM1 heart
phenotype

TRECUGBP1
Insertion of Tet-responsive

human CELF1 transgene; skeletal-
muscle-specific rtTA expression

Myofibers
containing central
nuclei, decreased

muscle weight,
impaired muscle

function, AS
alterations

DM1-like
phenotype limited
to skeletal-muscle

defects

Contribution of
CELF1

overexpression to
DM1 skeletal-

muscle phenotype

TRECUGBP2
Insertion of Tet-responsive

human CELF2 transgene; heart-specific
rtTA expression

No observed
heart pathology;
AS alterations
similar to those

observed in
TRECUBP1 mice

Mild heart
phenotype

Contribution of
CELF2

overexpression to
DM1 heart
phenotype

 (B) Transgenic Models with Repeat Expansion

 
Mouse
Model Generation Strategy (CTG)n DM1-Like

Features Limitations Research
Application Ref

 DM200

Insertion of a Tet-responsive
expanded DMPK transgene

where DMPK coding region is replaced by
GFP

200

Ribonuclear foci;
MBNL1

sequestration; AS
alterations;
myotonia,

progressive
cardiac

conduction
abnormalities

Splicing alterations
in the heart have

not been described

Study of DM1
phenotype

associated with
toxic CUG

repeats; modeling
muscle

regeneration; test
of therapeutic

strategies

 DM300 Insertion of a 45Kb human genomic
fragment

containing DMWD, DMPK and SIX5 genes
from a DM1 patient

~300 Ribonuclear foci
(skeletal muscle,
heart and brain);
myotonia; muscle

atrophy;
morphological
abnormalities;
changes in the
distribution of

MAPT/Tau protein
isoform; defect in

High mortality; mild
splicing alterations;
intergenerational
instability of CTG-
repeat numbers

Evaluation
of DMPK transcript
toxicity in different

tissues
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Based on the assumption that the expanded DMPK transcript is the main cause of DM1 disease, many different

mouse models expressing expanded CUG transcripts either ubiquitously or in specific tissues were generated to

model the disease mechanisms (Table 1B). The multisystemic impact of CUG expansions is well recapitulated in

DM200, DM300 and in DMSXL transgenic mice carrying the 3′ UTR portion or the entire human DMPK gene with

CTG repeats of different lengths, the phenotype being more severe in mice with larger expansion . In

DM300 and DMSXL mice, transgene expression resulted in the accumulation of ribonuclear foci in various tissues

and in the development of muscle weakness, behavioral abnormalities, growth retardation and perinatal mortality

. Recently, a mouse model constitutively expressing CTG repeats within the DMPK context was

generated, which exhibited particularly high CUG expression in the heart (LC15). These mice reproduced DM1-like

cardiac defects . Skeletal-muscle-specific, heart-specific and brain-specific DM1-like features have been

reproduced in mouse models expressing the repeat expansion in the respective tissues, either constitutively

(HSA )  or inducibly (EpA960 and TREDT960I mice strains) . The tissue-specific

phenotypes are usually strong and suitable for testing therapeutic molecules. However, at the same time, they do

not recapitulate the multisystemic DM1 phenotype. In the inducible models, CTG repeats interrupted with stretches

of CTCGA have been inserted in a portion of the DMPK human transgene. Interrupted repeats have the advantage

of being more stable than CTG repeats, but may not exactly reproduce the human DM1 disease condition. Each of

these mouse models exhibits advantages and limitations mostly depending on the temporal and spatial control of

the transgene expression (detailed in Table 1). Taken together, transgenic mouse models have been crucial to

understanding DM1 pathogenetic mechanisms and to testing therapeutic approaches.
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glucose
metabolism

 DMSXL

Insertion of a 45Kb human genomic
fragment

containing DMWD, DMPK and SIX5 genes
from a DM1 patient

>1000

Ribonuclear foci;
MBNL1

sequestration; AS
alterations;

deficits in motor
performance;

behavioral
abnormalities;

synaptic
dysfunction;
inhibition of
exploratory
activity and

cerebellar glial
dysfunction

High mortality;
severe body-weight

reduction;
interindividual

variability;
decreased
transgene

expression with
aging; mild
muscular

phenotype

Evaluation
of DMPK transcript
toxicity in different

tissues and in
multiple brain cell

types; test of
therapeutic
strategies

 HSA
Insertion of the human skeletal actin

(HSA) gene including CTG repeats in the
3’ UTR

~250

Ribonuclear foci;
AS alterations;
myotonia and

muscle
histopathology
abnormalities
(increase in

central nuclei and
variability in fiber

size) after six
months of age

Limited to skeletal
muscle; does not

contain DMPK gene
sequence; absence

of muscle
weakness

Investigation of
expanded-CUG-

repeat toxicity
in muscle fibers;

test of therapeutic
strategies

 LC15
Insertion of CTG expanded DMPK 3’ UTR

downstream Luciferase gene driven by
CMV-βA promoter

250–400

Ribonuclear foci,
AS alteration and

MBNL2
upregulation in

the heart; reduced
Na  and

K  channel
activity;

ventricular
arrhythmias

DM1-like phenotype
limited to heart

defects

Evaluation of
biophysical

mechanisms
reproducing DM1-

like
electrocardiograph

abnormalities

 EpA960/
𝛼-MHC-Cre

Insertion of CTG expanded DMPK exon
15 transgene containing Cre-responsive

loxP sequences; heart-specific myosin Cre
expression

960
(CTCGA-

interrupted)

Ribonuclear foci;
MBNL1

sequestration;
CELF1 protein

upregulation; AS
alterations;

cardiomyopathy,
arrhythmias;
systolic and

Does not reproduce
CTG-repeat

continuity; mouse
model no longer

available

Evaluation
of DMPK transcript
toxicity and CELF1
overexpression in

heart tissue
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diastolic
dysfunction

 
EpA960/
HSA-Cre

Insertion of CTG expanded DMPK exon
15 transgene containing Cre-responsive
loxP sequence; skeletal-muscle-specific

Cre expression

960
(CTCGA-

interrupted)

Ribonuclear foci;
MBNL1

sequestration;
CELF1 protein

upregulation; AS
defects; myotonia
and progressive
muscle wasting,
deficits in muscle
performance and
histopathological

abnormalities

Does not reproduce
CTG-repeat

continuity; mouse
model no longer

available

Evaluation
of DMPK transcript
toxicity and CELF1
overexpression in

skeletal tissue

 
EpA960/

CamKII-Cre

Insertion of CTG expanded DMPK exon
15 transgene containing Cre-responsive

loxP sequence; brain-specific Cre
expression

960
(CTCGA-

interrupted)

Ribonuclear foci;
MBNL1

sequestration; AS
alterations;

learning disability;
neurotransmission
dysfunction; brain
atrophy and aging

Does not reproduce
CTG-repeat

continuity; mouse
model no longer

available

Identify
mechanisms

involved in CTG-
dependent
neuronal

degeneration

 
TREDT960I/
𝛼-MHC-rtTA

Insertion of Tet-responsive
expanded DMPK exons 11–15 transgene;

heart-specific rtTA expression

960
(CTCGA-

interrupted)

Ribonuclear foci;
MBNL1

sequestration;
CELF1 protein

upregulation; AS
alterations ;
arrhythmias

Does not reproduce
CTG-repeat
continuity

Study of alteration
of ion transport

and action
potential in

cardiomyocytes
expressing toxic

CUG

 
TREDT960I/
MDAF-rtTA

Insertion of Tet-responsive
expanded DMPK exons 11–15 transgene;
skeletal-muscle-specific rtTA expression

960
(CTCGA-

interrupted)

Ribonuclear foci;
MBNL1

sequestration;
CELF1 protein

upregulation; AS
alterations;

muscle wasting
and myopathy

Does not reproduce
CTG-repeat
continuity

Study the
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