Dualistic Nature of NOx Impact on Greenhouse Effect

Subjects: Environmental Sciences

Contributor: Janusz Andrzej Lasek , Radosław Lajnert

Nitrogen oxides (NO_x = NO + NO₂) emitted from a stationary combustion chamber (including waste to energy plants) or engines cause numerous undesirable environmental effects. These include negative influences on human and animal health, detrimental effects on plants and vegetation, acid rain, and smog. These negative influences are commonly accepted by the scientific community. However, the impact of NO_x on the greenhouse effect (GHE) is not generally accepted by the scientific community.

NOx

greenhouse effect (GHE) indirect greenhouse gas

direct greenhouse gas

1. Introduction

It has already been mentioned that global warming potential (GWP) can be negative or positive. Indeed, the warming and cooling effect of NO_x in the atmosphere is highlighted in the literature $\frac{12}{2}$. The nature of this effect depends on the mentioned parameters such as NO_x source, horizontal and vertical location, and the co-existence of other compounds. In the next section, an explanation of the cooling and/or warming nature of NO_x is provided.

2. Warming Nature

The presence of NO_x can influence global warming. The results of investigations suggest that the main process responsible for this effect is the impact of NO_x on the conversion of tropospheric ozone (O₃) [4], which is recognized as a GHG ^[5]. Depending on the concentration of NO_x in the atmosphere and the equilibrium between other compounds contained in the atmosphere, O₃ can either be created or destroyed. If the concentration of NO_x are higher than the range of 10–30 pptv (parts-per-trillion (volumetric), 10^{-12}), O₃ can be created in the atmosphere. Furthermore, the rate of O_3 creation because of the presence of NO_x depends on the latitudes and seasons 4. Namely, it has been postulated that the presence of NO_x (NO/NO₂) influences the catalytic conversion of O₃, according to the following reactions ((2)-(5)) ^[6]:

 $OH + CO + O_2 \rightarrow CO_2 + HO_2 \quad (2)$

- $HO_2 + NO \rightarrow NO_2 + OH$ (3)
- $NO_2 + hv \rightarrow NO + O(^{3}P)$ (4)
- $O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$ (5)

Summarizing reactions (2)-(5), the overall process reaction (6) is

$$CO + 2O_2 + h\nu \rightarrow CO_2 + O_3$$
 (6)

Thus, this proves and provides clear evidence that the presence of NO_x causes the creation of O_3 and CO_2 under sunlight irradiation. Hence, they influence global warming because of the creation of GHGs. The effect of the presence of NO_x on O_3 conversion in the atmosphere was confirmed by Renyi Zhang, Xuexi Tie, and Donald W. Bond [7].

Another phenomenon potentially influencing global warming due to the presence of NO_x is their impact on N₂O conversion ^{[4][8]}. Namely, NO_x emitted into the atmosphere can be converted into N₂O (a direct GHG) in the complex processes occurring in the soil. The simplified description of this complex mechanism of converting NO_x into N₂O is as follows: Emitted NO is transformed into NO₂, and next to nitrogen acids and other compounds in the form of aerosols. These compounds are then transferred into the soil by precipitation. Further transformation in the soil (such as by the denitrification process) leads to incidental emissions of N₂O from the soil to the atmosphere. It was estimated that the N₂O emissions from soil (as a consequence of NO_x transformation) are 1.2%–3.6% of the total N₂O emissions from other sources ^[4]. Nevertheless, understanding the soil N cycling processes is still being discussed ^[9].

3. Cooling Nature

It was previously mentioned that the presence of NO_x can lead (in some specific conditions) to global cooling. This is why the GWP values are sometimes negative. Furthermore, NO_x are sometimes termed as cooling gases ^{[10][11]} [^{12][13]}. It was proven that the presence of NO can influence the increase in the concentration of OH radicals in the atmosphere, and OH radicals contribute to destroying methane, according to the following reactions ^[12]:

 $HO_2 + NO \leftrightarrow OH + NO_2$ (7)

```
OH + CH_4 \leftrightarrow H_2O + CH_3 (8)
```

Here, CH_4 belongs to the direct group of GHGs, thus destroying it causes a cooling effect. Moreover, CH_4 reduction results in a long-term reduction in tropospheric O_3 , and a long-term reduction in stratospheric water vapor from the reduced oxidation of CH_4 . Both of these phenomena are recognized as negative radiative forcing effects ^[14]. It should be explained that the cooling effect of NO_x depends on the impact of other compounds existing in the atmosphere. Namely, the presence of CO can contribute to a decrease in the concentration of OH radicals. Consequently, the cooling effect of NO_x can be inhibited, and the GWP for NO_x is positive (a warming effect). Furthermore, the decrease in the OH concentration inhibits CH_4 destruction (being a direct GHG). If the impact of NO_x is considered without reference to the CO contribution, it would only be assumed that the cooling effect of NO_x to convert from cooling gases to warming gases with a positive GWP ^[13]. One can have reasonable hope that the development of combustion technology by increasing the combustion efficiency and decreasing CO emissions will inhibit NO_x from having an effect as a warming gase.

Another phenomenon responsible for the cooling effect of NO_x is the formation of aerosols (dispersion of very fine liquid droplets) in the atmosphere. Increased aerosol formation and cloud reflectivity cause a decrease in sunlight radiation and enhance the cooling effect ^{[4][10]}. The main process responsible for aerosol formation is the conversion of SO₂ into H₂SO₄ formations, which condensate as very fine droplets (aerosols). The contribution of NO_x in this process relies on OH formation. It has already been explained that an increase in NO concentration causes an increase in OH radical concentration in the atmosphere. Moreover, the presence of OH radicals intensifies SO₂ conversion into aerosols, thus directly causing a cooling effect ^[10].

4. Summary

It has already been mentioned that the warming and cooling effects of NO_x in the atmosphere are possible due to the impact of different processes. The warming and cooling effects are summarized in **Table 1**. These effects were divided into three groups in terms of the influence area (i.e., air, water, soil, and vegetation aboveground). Some processes seem to be opposing. Thus, examples of these cases are described in a "cross-impact" column.

Warming	Cooling	Cross Impact
	Air	
In the short-term, NO _x emissions contribute to warming by enhancing tropospheric O ₃ concentrations (on a daily time scale), which are recognized as GHG ^{[2][5]} .	NO _x enhances OH production. CH ₄ (GHG) is oxidized in the presence of OH ^{[2][14]} . NO _x can lead to decreases in O ₃ concentration on a decadal time scale because it causes an increase in OH radical concentration, which decreases CH ₄ concentration, which decreases NO ₂ formation, which decreases O ₃ formation. ^{[2][14]} . The formation of fine particles called aerosols. Aerosols are powerful cooling agents, both directly by scattering or absorbing light, and indirectly by affecting the cloud formation, their lifetime, and brightness ^{[2][10]} .	NO _x leads to O ₃ decreasing (on a decadal time scale) or increasing (on a daily time scale) ^[2] .
	Soil and vegetation aboveground	
Nitrogen is a substrate for N ₂ O production by nitrifying and denitrifying bacteria in soils. Thus, the	In some cases, inputs of Nr from atmospheric deposition enhance plant growth rates	Warming and cooling effects are possible. The effect of N on net C flux (both above and below ground

Table 1. The summary of the warming and cooling effect of NO_x in terms of the influence on the area.

Warming	Cooling	Cross Impact
deposition of nitrogen (Nr) onto ecosystems can increase N ₂ O emissions and decrease the uptake of atmospheric CH ₄ by soil microorganisms. Soil microbes that consume CH ₄ often preferentially consume ammonium (NH ₄ ⁺), leading to reduced CH ₄ consumption rates in the presence of abundant NH ₄ ⁺ [2]. Inhibition of photosynthesis and a reduction of atmospheric CO ₂ sequestration by the plant biomass due to an increase of O ₃ concentration in the atmosphere (impacted by NO _x). Reduction of aboveground C storage and reduction of belowground C assimilation and allocation ^{[1][2]} In some cases, the excess of N leads to the enhanced mortality of plants due to nutrient imbalances or acidification ^[2] .	because of the fundamental constraint of N availability on plant productivity and CO ₂ uptake into plant biomass. N additions to soil typically increase C capture and storage ^[2] . Foliar N may also increase the albedo of the canopy, enhancing the reflectivity of the Earth's surface, and hence contributing to cooling ^[2] .	pools) differs among ecosystems [1]
	Water	
Nitrogen is a substrate for N ₂ O production by nitrifying and denitrifying bacteria in water bodies [2]. Denitrification occurring in water can emits N ₂ O [15]. Nitrous oxide (N ₂ O) can be emitted from wastewater treatment processes [15][16][17]. Both SO ₂ and NO inhibited algal growth at a high level of CO ₂ [18][19].	N- water can accelerate to grow algae growth. Nevertheless, the harmful (toxic, food-web altering, hypoxia-generating) algal blooms (HABs) have been linked to human nutrient (phosphorus (P) and nitrogen (N)) over enrichment ^[20] The serious problem is cyanobacterial bloom formation. Decreasing P and N loads can counteract the direct positive effect of warming temperatures on bloom proliferation ^{[21][22]} . Some algae species can sequestrate the CO ₂ from the flue gas including SO _X and NO ^[23] . In the case of some species (green alga Chlorella sp.), the presence of NO _X can enhance	NO _x and SO _x might be beneficial to the growth of microalgae as they can provide additional nutrients. However, this is true only when the culture pH is stably controlled and the NO _x /SO _x concentrations should be lower than the inhibitory level [25].

 Butterbach-Bahl, K.; Nemitz, E.; Zaehle, S.; Billen, G.; Boeckx, P.; Erisman, J.; Garnier, J.; Upstill-Goddard, R.; Kreuzer, M.; Oenema, O. Nitrogen as a Threat to the European Greenhouse Balance in: The European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011.

- Pinder, R.W.; Bettez, N.D.; Bonan, G.B.; Greaver, T.L.; Wieder, W.R.; Schlesinger, W.H.; Davidson, E.A. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry 2013, 114, 25–40.
- Mahashabde, A.; Wolfe, P.; Ashok, A.; Dorbian, C.; He, Q.; Fan, A.; Lukachko, S.; Mozdzanowska, A.; Wollersheim, C.; Barrett, S.R.H.; et al. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci. 2011, 47, 15–52.
- 4. Lammel, G.; Graßl, H. Greenhouse effect of NOx. Environ. Sci. Pollut. Res. 1995, 2, 40-45.
- 5. Mitchell, J.F. The "greenhouse" effect and climate change. Rev. Geophys. 1989, 27, 115–139.
- Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, E.J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; et al. Atmospheric Chemistry and Greenhouse Gases; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2001.
- 7. Zhang, R.; Tie, X.; Bond, D.W. Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Proc. Natl. Acad. Sci. USA 2003, 100, 1505–1509.
- Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Sci. Total Environ. 2018, 624, 1513–1522.
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122.
- 10. Lawrence, M.G.; Crutzen, P.J. Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature 1999, 402, 167–170.
- 11. Fuglestvedt, J.S.; Isaksen, I.S.A.; Wang, W.-C. Estimates of indirect global warming potentials for CH4, CO and NOx. Clim. Chang. 1996, 34, 405–437.
- Johnson, C.E.; Derwent, R.G. Relative radiative forcing consequences of global emissions of hydrocarbons, carbon monoxide and NOx from human activities estimated with a zonallyaveraged two-dimensional model. Clim. Chang. 1996, 34, 439–462.
- 13. Wild, O.; Prather, M.J.; Akimoto, H. Indirect long-term global radiative cooling from NOx emissions. Geophys. Res. Lett. 2001, 28, 1719–1722.
- 14. Skowron, A.; Lee, D.S.; De León, R.R. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions. Atmos. Environ. 2015, 104, 69–78.

- Adouani, N.; Limousy, L.; Lendormi, T.; Sire, O. N2O and NO emissions during wastewater denitrification step: Influence of temperature on the biological process. Comptes Rendus Chim. 2015, 18, 15–22.
- Kimochi, Y.; Inamori, Y.; Mizuochi, M.; Xu, K.-Q.; Matsumura, M. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. J. Ferment. Bioeng. 1998, 86, 202–206.
- Hu, Z.; Zhang, J.; Xie, H.; Li, S.; Zhang, T.; Wang, J. Identifying sources of nitrous oxide emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) acclimated in different aeration rates. Enzym. Microb. Technol. 2011, 49, 237–245.
- 18. Negoro, M.; Shioji, N.; Miyamoto, K.; Micira, Y. Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl. Biochem. Biotechnol. 1991, 28, 877.
- Li, T.; Xu, G.; Rong, J.; Chen, H.; He, C.; Giordano, M.; Wang, Q. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J. Plant Physiol. 2016, 195, 73–79.
- 20. Paerl, H.W.; Scott, J.T. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ. Sci. Technol. 2010, 44, 7756–7758.
- 21. El-Shehawy, R.; Gorokhova, E.; Fernandez-Pinas, F.; del Campo, F.F. Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments? Water Res. 2012, 46, 1420–1429.
- 22. Wagner, C.; Adrian, R. Cyanobacteria dominance: Quantifying the effects of climate change. Limnol. Oceanogr. 2009, 54, 2460–2468.
- 23. Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 2011, 102, 4945–4953.
- 24. Wang, C.; Yu, X.; Lv, H.; Yang, J. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J. Environ. Biol. 2013, 34, 421.
- 25. Yen, H.-W.; Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review. Biotechnol. J. 2015, 10, 829–839.

Retrieved from https://encyclopedia.pub/entry/history/show/76147