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Benchmark calculations of high-precision numerical scheme for nonlinear hyperbolic evolution equations are

demonstrated. The scheme is based on the Fourier spectral method for spatial discretization and the implicit

Runge-Kutta method for time discretization.
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1. Nonlinear Hyperbolic Evolution Equations

The dynamics of nonlinear hyperbolic equations are fascinating enough to be applicable to wave propagation in

any scales from elementary particles to waves in cosmic scale. Even fundamental properties have not been fully

understood for nonlinear hyperbolic problems, and it is difficult to elucidate these properties only by pure

mathematical analysis. So that to understand fundamental properties of nonlinear waves, it is useful to employ

numerical calculations. Note that, while in terms of treating various nonlinear problems (e.g., various type of

boundary, discontinuity such as shock propagation) it is practical to specialize numerical schemes individually, a

basic and general framework for precisely calculating nonlinear hyperbolic evolution equations had not been well

established until Takei-Iwata . Here some benchmark calculations of high-precision numerical scheme for

calculating nonlinear hyperbolic evolution equations are demonstrated. Much attention is paid to “universal

applicability” and “reliability”. Among others, demonstration movies are presented in this article for the first time.

For a concrete problem, we consider one-dimensional nonlinear Klein-Gordon equations (for a textbook, see ).

The initial and boundary values problem of one-dimensional Klein-Gordon equations is written by

(1)

[1]

[2]
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for (x, t) ∈ [0, L] × [0, T], where α, β and T are real numbers, and f (x) and g(x) are initial functions. The periodic

boundary condition is imposed. Inhomogeneous term F(u) is either linear or nonlinear function of u (e.g., the

polynomials or trigonometric functions of u). For constructing the numerical scheme, the equations are written by a

system of first-order evolution equations:

(2)

2. Background: Challenges in Numerical Computation

Various numerical schemes have been investigated to reproduce the solutions of nonlinear partial differential

equations accurately and efficiently. For nonlinear hyperbolic equations, numerical schemes well reproducing the

conservation laws is required to be highly accurate, since the smoothing effect particularly associated with

parabolic equations cannot be expected. Here, when typical numerical schemes such as the difference method are

applied, we face various problems in the discretization of spatial and time variables as shown below.

2.1. Spatial Discretization

For the spatial discretization, a conventional finite difference method can be used to discretize the spatial variables

in calculating Klein-Gordon equations, but it requires a very small spatial unit Δx to ensure the sufficient accuracy.

Furthermore, the numerical dispersion inevitably appears in typical finite difference methods in which numerical

solutions are known to be difficult to satisfy the conservation laws with certain sufficient accuracy.

2.2. Time Discretization

For the time discretization, explicit methods have been usually employed in calculating Klein-Gordon equations, but

it requires additional treatments to obtain sufficiently accurate solutions. While linear and nonlinear solvers based

on explicit methods are relatively simple with low computation cost, it is also known that there is a restriction called

the Courant-Friedrichs-Lewy Condition (CFL condition, for short) on the time unit Δt in order to obtain numerical

results stably. Therefore, a numerical scheme combining explicit and implicit methods has been studied: e.g., a

method for weakening the restriction on Δt with keeping the stability of calculations .

2.3. High-Precision Numerical Scheme

[3][4][5]
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For a high-precision numerical scheme, here we present spectral method for spatial discretization and Runge-Kutta

method for time discretization . By the spectral method, the solution in the wavenumber space is efficient to avoid

the numerical dispersion, and to satisfy conservation laws to certain satisfactory degrees. By the two-stage and

third-order Runge-Kutta method as unconditionally-stable fully implicit method, the numerical solution with high

accuracy can be necessarily obtained stably. The calculation cost of numerical scheme is small enough to be at the

order of O(N log  N). The precision of the scheme can be found in Figure 1.

Figure 1. Δt (left panel) and Δx (right panel) dependence of error, where Δx is parametrized by N. The proposed

scheme corresponds to RK MH u (for details of notation, see ).

3. Details of numerical scheme

3.1. Fourier Spectrum Method

The spectral method  is employed for discretizing the spatial variable. Let the solution of Equation (2)

be expanded by the Fourier series

(3)

Then substitute them into the first equation of (2). After multiplying cos(2πkx/L) and sin(2πkx/L) respectively, they

are integrated over Ω = [0, L] with respect to x. Similarly, substitute Equation (3) into the second equation of (2).

[1]

2

-1

err, t13 
[1]

[6][7][8][9][10][11]
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After multiplying cos(2πkx/L) and sin(2πkx/L) respectively, they are integrated over Ω = [0, L] with respect to x. The

unknowns are formulated as

(4)

The equations are written by

(5)

In each time step, the solution to the original Equation (2) is obtained by solving Equations. (4) and (5) in which a ,

c  and a  , b  , c  , d  (l = 1, ・ ・ ・ , N) are calculated.

3.2. Implicit Runge-Kutta Method

The implicit Runge-Kutta method  of two-stage and third-order is employed for discretizing the time variable. Let

u(t) be the solution of the initial value problem of the abstract evolution equation

in a Hilbert space. The time interval (α, β) is divided into equally-discretized M segments being incremented by Δt =

(β - α)/M. Let the discrete time sequence {t } be represented by

and the approximated value of unknown function u(t ) be denoted by U . In this situation, the following method for

obtaining the approximate value U  is called the Runge-Kutta method

0

0 l l l l

[12]

m
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Here, the natural number s is called the number of steps, and a , b , c  are the parameters that define the formula.

It is called the implicit Runge-Kutta method when a ≠0 (j > i) exists. The conditions

are imposed on the parameters a , c .

4. Demonstration of high-precision numerical scheme

4.1. Example: Linear Case (Video)

Let us take the initial and boundary value problem (2) with F(u) = u, α = -1, β = 1, Ω = [0, L].

(6)

The initial function is shown in Figure 2, and the calculated movie is shown in Video 1 and Video 2.

Figure 2. Initial function u and v.
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4.2. Example: Nonlinear Case (Video)

Let us take the initial and boundary value problem (2) with F(u) = sin u, α = -1, β = 1, Ω = [0, L], L=

6.7430014192503. The nonlinear wave equation in this case is known as the Sine Gordon equation.

(7)

The initial function is shown in Figure 3, and the calculated movie is shown in Video 3 and Video 4.

Figure 3. Initial function u and v.

4.3. Example: Other Cases with High Complexity

In addition, the calculation results of more complicated solutions such as the breather solution for nonlinear

hyperbolic equations can be found in Refs. .
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