Entry Collections
Aging and Public Health (34)
Aquaporin (2)
Asian Religion (2)
Chemical Bond (3)
COVID-19 (47)
Extraction Techniques in Sample Preparation (14)
Gastrointestinal Disease (18)
Hypertension and Cardiovascular Diseases (20)
Impact of Physical Exercises on Bone Activities (1)
MDPI English Writing Prize (1)
MedlinePlus (2146)
Molecules of the Week (4)
Nitric Oxide: Physiology, Pharmacology, and Therapeutic Applications (14)
Nuclear Magnetic Resonance (7)
Organic Synthesis (19)
Peptides for Health Benefits (24)
Remote Sensing Data Fusion (16)
Retinal Disease and Metabolism (4)
Society 5.0 (29)
Tight Junction and Its Proteins (2)
Wastewater Treatment (8)
Aging and Public Health
Sort:
Show:
Page Size:
Submitted by: Domenico Rendina
Osteoporosis is defined as a decrease in bone density that results in micro-architecture deterioration, predisposing the affected patients to fractures. Operationally, osteoporosis has been defined on the basis of a bone mineral density assessment using dual energy X-ray absorptiometry.
Submitted by: Bishnu Bajgain
Access to primary health care (PHC) services is a right for all individuals and communities. Adequate access to quality care in PHC is crucial to everyone, however, equal and equitable access to healthcare for all individuals in society is still a matter of great concern in many countries across the world. Immigrants in particular face unique challenges in accessibility and usability of basic healthcare services, especially when moving to a more developed nation. These challenges are often driven by factors such as differing culture, language, economy, literacy, social relations, and exposure to a new and unknown healthcare structure. Understanding these social and cultural determinants of health is a necessary foundation for developing an effective and efficient primary healthcare system. This study explores patient experiences in primary care from the perspective of immigrant communities and identifies areas for further research and improvement.
Submitted by: Herbert Löllgen
Over the last decade, many regular physical activity studies with large prospective cohorts have been conducted. Taken together, more than a million subjects have been included in these exercise studies. The risk of morbidity and mortality has been reduced by 30% to 40% as a result of exercise. These risk reductions hold true for many diseases, as well as for prevention and rehabilitation. Physical activity has also been in the treatment of many diseases, such as cardiopulmonary, metabolic or neurologic/psychiatric diseases, all with positive results.
Submitted by: Olivier Armant
How chronic exposures to sublethal doses of pollutants affect wild life is still under schientific debate. In this paper we exposed fertilized zebrafish embryos to low to moderate dose rates of ionizing radiations, a well known physical stressor that induces DNA damages.  We assessed the molecular effects induced by ionizing radiations on gastrulation, a key developmental stage during embryogenesis, focusing on the transcriptome and DNA methylation patterns. An hypomethylation of the promoter of genes involved in ectoderm and mesoderm development was observed, and correlated with perturbation of transcriptional activity. Our data suggest that the early developmental perturbations in the morphogenesis of the neuroectoderm and the mesoderm might predict the functional defects in neurogenesis and muscle development observed at later stages.
Submitted by: Qamar Uddin Ahmed
In recent years, there is emerging evidence that isoflavonoids could play an important role in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. 
Submitted by: Yong Chool Boo
Certain analogs of α-melanocyte stimulating hormone (MSH) and peptides with the sequences derived from the hormone were shown to promote or suppress melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride.
Submitted by: Guang-Zhen Jin
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited on symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA. In this review, we summarize the current experimental progress that will focus on technologies such as liposomes, micelles, dendrimers, polymeric nanoparticles (PNPs), exosomes, and inorganic nanoparticles (NPs) for their potential treatment of OA.
Submitted by: Bonglee Kim
Cervical cancer is the fourth most common cancer among women worldwide. Though several natural products have been reported regarding their efficacies against cervical cancer, there has been no review article that categorized them according to their anti-cancer mechanisms. In this study, anti-cancerous natural products against cervical cancer were collected using Pubmed (including Medline) and google scholar, published within three years. Their mechanisms were categorized as induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, reduction of resistance, and regulation of miRNAs. A total of 64 natural products suppressed cervical cancer. Among them, Penicillium sclerotiorum extracts from Cassia fistula L., ethanol extracts from Bauhinia variegate candida, thymoquinone obtained from Nigella sativa, lipid-soluble extracts of Pinellia pedatisecta Schott., and 1′S-1′-acetoxychavicol extracted from Alpinia conchigera have been shown to have multi-effects against cervical cancer. In conclusion, natural products could be attractive candidates for novel anti-cancer drugs.
Submitted by: Hyong Woo Choi
Salicylic acid (SA) is a plant hormone which plays a crucial role in the plant defense against various pathogens and abiotic stresses. Increasing reports suggest that this phenolic compound and its derivatives, collectively termed salicylates, not only regulate plant defense but also have beneficial effects on human health. Both natural and synthetic salicylates are known to have multiple targets in humans, thereby exhibiting various appreciating pharmacological roles, including anti-inflammatory, anticancer, neuroprotective, antidiabetic effects, and so on. The role of some salicylates, such as acetylsalicylic acid (aspirin), 5-aminosalicylic acid (mesalazine), and amorfrutins in human diseases has been well studied in vitro. However, their clinical significance in different diseases is largely unknown. Based on recent studies, five natural salicylates, including amorfrutin, ginkgolic acid, grifolic acid, tetrahydrocannabinolic acid, and cannabidiolic acid, showed potential roles in different challenging human diseases. This review summarizes together some of the recent information on multitarget regulatory activities of these natural salicylates and their pharmacological roles in human health.
Submitted by: Roxana Damiescu
Opioid abuse and misuse have led to an epidemic which is currently spreading worldwide. Since the number of opioid overdoses is still increasing, it is becoming obvious that current rather un-systematic approaches to tackle this health problem are not effective. This review suggests that fighting the opioid epidemic requires a structured public health approach. Therefore, it is important to consider not only scientific and biomedical perspectives, but societal implications and the lived experience of groups at risk as well.
Submitted by: Florence Pinet
       This entry aims to introduce the physiological roles and pathological implications of oxidative stress in cardiovascular tissues
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
  • Page
  • of
  • 3