Entry Collections
Aging and Public Health (27)
Aquaporin (2)
Asian Religion (2)
Chemical Bond (3)
COVID-19 (44)
Extraction Techniques in Sample Preparation (14)
Gastrointestinal Disease (17)
Hypertension and Cardiovascular Diseases (18)
Impact of Physical Exercises on Bone Activities (1)
MDPI English Writing Prize (1)
MedlinePlus (2144)
Molecules of the Week (5)
Nitric Oxide: Physiology, Pharmacology, and Therapeutic Applications (14)
Nuclear Magnetic Resonance (7)
Organic Synthesis (17)
Peptides for Health Benefits (22)
Remote Sensing Data Fusion (16)
Retinal Disease and Metabolism (3)
Society 5.0 (27)
Tight Junction and Its Proteins (2)
Wastewater Treatment (6)
Tight Junction and Its Proteins
Sort:
Show:
Page Size:
Submitted by: Joen-Rong Sheu
Osteoarthritis (OA) is a most common type of arthritis occur in the aged population. It affects any joint in the body and degenerates the articular cartilage and subchondral bone. Despite the pathophysiology of OA is different, still cartilage resorption is a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have paid much attention due to their potential biological effects. Therapeutic value of natural products in OA has increased reputation by presenting clinical impact with insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs for long time. Recently, different types of compounds have been reviewed for their biological activities. In this review, we summarize numerous natural products for the development as MMPs inhibitors in arthritic diseases and describe the major signaling targets that involved for the treatments of these destructive joint diseases.
Submitted by: Markus Gräler
The breakdown of the endothelial cell (EC) barrier contributes significantly to sepsis mortality. Sphingosine 1-phosphate (S1P) is one of the most effective EC barrier-stabilizing signaling molecules. Stabilization is mainly transduced via the S1P receptor type 1 (S1PR1). Here, we demonstrate that S1P was autonomously produced by ECs. S1P secretion was significantly higher in primary human umbilical vein endothelial cells (HUVEC) compared to the endothelial cell line EA.hy926. Constitutive barrier stability of HUVEC, but not EA.hy926, was significantly compromised by the S1PR1 antagonist W146 and by the anti-S1P antibody Sphingomab. HUVEC and EA.hy926 differed in the expression of the S1P-transporter Spns2, which allowed HUVEC, but not EA.hy926, to secrete S1P into the extracellular space. Spns2 deficient mice showed increased serum albumin leakage in bronchoalveolar lavage fluid (BALF). Lung ECs isolated from Spns2 deficient mice revealed increased leakage of fluorescein isothiocyanate (FITC) labeled dextran and decreased resistance in electric cell-substrate impedance sensing (ECIS) measurements. Spns2 was down-regulated in HUVEC after stimulation with pro-inflammatory cytokines and lipopolysaccharides (LPS), which contributed to destabilization of the EC barrier. Our work suggests a new mechanism for barrier integrity maintenance. Secretion of S1P by EC via Spns2 contributed to constitutive EC barrier maintenance, which was disrupted under inflammatory conditions via the down-regulation of the S1P-transporter Spns2.