Entry Collections
Aging and Public Health (34)
Aquaporin (2)
Asian Religion (2)
Chemical Bond (3)
COVID-19 (47)
Extraction Techniques in Sample Preparation (14)
Gastrointestinal Disease (18)
Hypertension and Cardiovascular Diseases (20)
Impact of Physical Exercises on Bone Activities (1)
MDPI English Writing Prize (1)
MedlinePlus (2146)
Molecules of the Week (4)
Nitric Oxide: Physiology, Pharmacology, and Therapeutic Applications (14)
Nuclear Magnetic Resonance (7)
Organic Synthesis (19)
Peptides for Health Benefits (24)
Remote Sensing Data Fusion (16)
Retinal Disease and Metabolism (4)
Society 5.0 (29)
Tight Junction and Its Proteins (2)
Wastewater Treatment (8)
Organic Synthesis
Page Size:
Submitted by: Aparna Das
Ascorbic acid is the most well-known vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis. In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or aqueous media. The readily available and easy handling features of ascorbic acid make these procedures highly fascinating.
Submitted by: Aparna Das
Ascorbic acid is a vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. 
Submitted by: Bimal Banik
Discovery and synthesis of penicillin and other beta-lactam antibiotics have received sustained attention. The use of β-lactam antibiotics is extensively documented in several thousand of publications. In modern times, microwave-induced reactions are also used extensively for the synthesis and stereochemical studies of diverse β-lactams. In this paper, the author describes a few crucial reactions that are performed toward the synthesis of β-lactams and products obtained from them under classical conditions as well as by domestic or automated microwave oven.
Submitted by: ANNA RASPOLLI
Alkyl levulinates (ALs) represent outstanding bio-fuels and strategic bio-products within the context of the marketing of levulinic acid derivatives. In order to promote the market for these bio-products and, concurrently, the immediate development of new applications, it is necessary to speed up the intensification of their production processes. In this regard, today, it is possible to achieve this important issue only by using low-cost or, even better, waste biomasses, as starting feedstocks. Thus, the transition to the real biomass now represents a necessary choice for allowing the next ALs production on a larger scale. The improvement of the available synthetic strategies, the use of raw materials and the development of new applications for ALs can contribute to develop more intensified, greener and sustainable processes. 
Submitted by: Tang Xin Ting
Azo-functionalized materials are one of the appealing groups of the functionalized materials owing to their photoswitching behaviour and have been explored for various potential applications viz., optical data storage, sensor, display devices, nonlinear materials and molecular switches. Recently, azo-functionalized bent-core liquid crystals (BCLCs) have gained significant attention because they have dual properties of BCLCs and azobenzene, which enables to generate new multifaceted functional and smart materials. In this report, the recently synthesized azobenzene containing bent-core mesogens and its subclass, the so-called hockey stick and V-shaped molecules are summarized. The mesomorphic behaviour of reported BCLCs affected by the type of central core unit, the nature, number and position of the lateral substituents and the type and length of the terminal chain are discussed. The photoisomerization process of these photoresponsive BCLCs in solid, solution and mesophase, as well as the impact of light on the chemical and electrical properties of them, are discussed.
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. A group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes of topoisomerase inhibitors work by different molecular mechanisms that have repercussions on the cell cycle checkpoints and death effectors. 
Hydatid cyst or cystic echinococcosis (CE) is well-known as one of the most common universal parasitic infections, which infects a wide range of hosts such as humans, wild animals, and domestic livestock. Therefore, CE can be considered as an important challenge both from medical and economic points of view.
Submitted by: Aparna Das
Synthesis, biological activity and structure-activity relationships of diverse compounds are described. The relationships between dipole moment and biological activities are discussed. Despite the progress of interdisciplinary science, the use of dipole moment values of organic compounds to understand their potent medicinal activities in various diseases remains unexplored.
Submitted by: Francisco Palacios
Heterocyclic nitrogen compounds, including fused 1,5-naphthyridines, have versatile applications in synthetic organic chemistry and play an important role in the field of medicinal chemistry, as many of them have a wide range of biological activities. In this review, a wide range of synthetic protocols for the construction of this scaffold are presented. For example, Friedländer, Skraup, Semmlere-Wolff, and hetero-Diels-Alder, among others, are well known classical synthetic protocols used for the construction of the main 1,5-naphthyridine scaffold. These syntheses are classified according to the nature of the cycle fused to the 1,5-naphthyridine ring: carbocycles, nitrogen heterocycles, oxygen heterocycles, and sulphur heterocycles. In addition, taking into account the aforementioned versatility of these heterocycles, their reactivity is presented as well as their use as a ligand for metal complexes formation. Finally, those fused 1,5-naphthyridines that present biological activity and optical applications, among others, are indicated.
Submitted by: CHOONG JIAN FUI
The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. Traditional Ullmann-type couplings suffer from limited substrate scopes and harsh reaction conditions. The introduction of a new copper-based catalyst over the past two decades has totally changed this situation as it enables the reaction promoted in mild condition. The reaction scope has also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia and industry. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. The biaryl ether division is not only popular in natural products and synthetic pharmaceuticals but also widely found in many pesticides, polymers, and ligands. Copper catalyst has received great attention owing to the low toxicity and low cost. The introduction of homogeneous copper catalysts with the presence of bidentate ligands and also heterogeneous copper catalyst over the past two decades has totally changed this situation as these ligands enable the reaction promoted in mild condition. The reaction scope has also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia and industry. This review had been summarized recently advance homogeneous and heterogeneous copper catalyst in Ullmann reaction and its application and natural product and pharmaceutical industry.
Submitted by: Afrasim Moin
Microneedles (MNs) are tiny needle like structures used in drug delivery through layers of the skin. They are non-invasive and are associated with significantly less or no pain at the site of administration to the skin. MNs are excellent in delivering both small and large molecules to the subjects in need thereof. There exist several strategies for drug delivery using MNs, wherein each strategy has its pros and cons. Research in this domain lead to product development and commercialization for clinical use. Additionally, several MN-based products are undergoing clinical trials to evaluate its safety, efficacy, and tolerability. 
Submitted by: Lucia Altucci
 miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment. 
  • Page
  • of
  • 2