On Bilateral Contractions

Subjects: Analysis
Created by: Erdal Karapinar

In this manuscript, we introduce a new type of contraction, bilateral contraction which merges two significant approaches in the fixed point theory: Caristi type contractions and Jaggi type contractions. The principal aim of the main result is to enrich the literature by combining the techniques of the mentioned two celebrated results that belong to Jaggi and Caristi. We consider an example to indicate the validity and genuine nature of the main result.

1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundam. Math. 1922, 3, 133–181. [CrossRef]

2. Caccioppoli, R. Una teorema generale sull’esistenza di elementi uniti in una transformazione funzionale.
Ren. Accad. Naz Lincei 1930, 11, 794–799.

3. Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976,
215, 241–251. [CrossRef]

4. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230.

5. Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expression. Indian J. Pure
Appl. Math. 1975, 6, 1455–1458.

6. Karapinar, E.; Khojasteh, F.; Mitrovic, Z.D. A Proposal for Revisiting Banach and Caristi Type Theorems in
b-Metric Spaces. Mathematics 2019, 7, 308. [CrossRef]

Cite this article

Erdal, KARAPINAR. On Bilateral Contractions, Encyclopedia, 2019, v1, Available online: https://encyclopedia.pub/223