1. Please check and comment entries here.
Table of Contents

    Topic review

    Novel Delivery Systems of Polyphenols

    View times: 27
    Submitted by: Diaconeasa Zorita
    (This entry belongs to Entry Collection "Biopharmaceuticals Technology ")


    Polyphenols encapsulated in liposomes are known to produce more substantial effects on targeted cells than unencapsulated polyphenols, while having minimal cytotoxicity in healthy cells. 

    1. Introduction

    Polyphenols are a large group of secondary metabolites, consisting of one or more aromatic rings to which one or more hydroxyl groups are attached [1]. They are found in large quantities in various foods, such as fruits, vegetables, coffee, tea, chocolate, and wine, as illustrated in Figure 1 [2]. Depending on their origin, biological function, and chemical structure, polyphenols can be classified into two different categories: flavonoids and non-flavonoids. The first class comprises flavonols, flavones, flavanones, anthocyanidins, catechins, isoflavones, and chalcones. On the other hand, the second class comprises phenolic acids (such as hydroxybenzoic acid and derivates, along with hydroxycinnamic acids and derivates) and others, including stilbenes, lignans, curcuminoids, and tannins. It is worth mentioning that, among all known polyphenols, 60% belong to the flavonoids group, and 30% include phenolic acids [3].
    Figure 1. Classification of polyphenols and their biological sources.

    2. The Need to Encapsulate Polyphenols in Liposomes

    Polyphenols have recently come to the attention of researchers from various fields such as pharmaceuticals, cosmetics, and food, due to their potential for prevention and protection against numerous diseases and their beneficial properties on an individual’s health. Many beneficial effects of polyphenols are attributed to their antioxidant, anti-inflammatory, antimicrobial, antimutagenic, anticarcinogenic, and digestion-stimulating properties [4]. Over the years, the effects of polyphenols have been intensively studied in preventing a wide range of conditions, such as diabetes, obesity, cardiovascular disease, neurodegenerative disorders, and cancer [5].
    In everyday life, most people pursue a diet rich in polyphenols sourcing from various foods that contain them, such as green vegetables, fruits, soybeans, tea, beer, coffee, or red wine. However, there may be variations in their quantities consumed from one country to another in terms of their consumption. For example, in the United States, Spain, and Australia, estimated consumptions of flavonoids are about 190, 313, and 454 mg/day, respectively [6]. However, because foods contain a variable amount of flavonoids due to their growing environment, storage, processing, or cooking, such data are generally considered approximations of food contents [7].
    Because vegetables, fruits, coffee, red wine, and tea are all rich in polyphenols, current research focuses on identifying those responsible for a particular pharmacological or chemopreventive effect, making considerable efforts to elucidate molecular mechanisms of action [8].
    Most of the pathological conditions mentioned are related to oxidative stress caused by reactive oxygen and nitrogen species (Figure 2). Thus, in particular, polyphenols represent the primary antioxidant agent in fruits, with superior efficacy to vitamin C [9]. It has been determined that the substances with the most substantial antioxidant effect, which can neutralize free radicals by donating an electron or a hydrogen atom, are polyphenols. Therefore, polyphenols inhibit the generation of free radicals while reducing the oxidation rate by inhibiting the formation of active species and free-radical precursors or by deactivating them. Polyphenols usually perform as direct radical eliminators in lipid peroxidation chain reactions (chain breakers). They transfer an electron to the free radical, neutralizing it; after that, they become stable radicals (less reactive), and the chain reactions terminate [10]. In addition to the functions presented above, polyphenols also act as metal chelators. They can cause the chelation of transition metals such as Fe2+, and this process will directly reduce the rate of the Fenton reaction and prevent oxidation caused by highly reactive hydroxyl radicals [11][12]. It is also known that polyphenols can act as co-antioxidants and are part of the regeneration process of essential vitamins [13]. These compounds can induce antioxidant enzymes such as glutathione peroxidase, superoxide dismutase, and catalase that decompose hydroperoxides, hydrogen peroxide, and superoxide anions. In contrast, they can also inhibit the expression of enzymes such as xanthine oxidase [14].
    Figure 2. The mechanisms via which polyphenols act on free radicals, reducing oxidative stress. SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; MDA, malondialdehyde; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, antioxidant response elements; Small Maf, musculoaponeurotic fibrosarcoma proteins; Keap1, Kelch-like ECH-associated protein 1; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells.
    Through the mechanisms presented above, polyphenols are involved in critical activities that reduce oxidative stress. However, their roles at the cellular level are believed to be much more complicated, requiring further studies to elucidate them. Some polyphenols such as flavonoids are absorbed in the gastrointestinal tract, but their plasma concentration is low (1 µmol/L). The leading cause of this is the rapid metabolism of human tissues [10].
    According to research on polyphenols, they have been shown to have the capacity to diminish inflammation by inhibiting edema, suppress the development of tumors, possess proapoptotic and anti-angiogenic properties, modulate the immune system, improve capillary resistance by acting on blood vessel components, protect the cardiovascular system, and limit weight gain [15].
    Even though polyphenols have health benefits, the amount of polyphenols that can be administered orally is not enough to reach the concentration needed for systemic therapies to be effective. Characteristics such as low water solubility, poor absorption, and rapid metabolism play a role in decreasing the oral bioavailability of polyphenols [8]. Although there are several definitions of the term bioavailability, the best of these expressions is the part of an ingested compound that can reach the systemic circulation and be distributed to the various targeted tissues where it can exert its biological action [16]. Thus, only a small amount of the molecules administered orally are absorbed due to insufficient gastric residence time, low permeability, or low solubility. The absorption of polyphenols from food is always influenced by their chemical structure (degree of glycosylation or acylation), ability to conjugate with other phenols, molecular size, degree of polymerization, and water solubility. Therefore, the bioavailability of these compounds is low when they are administered orally, due to their poor solubility and rapid metabolism (polyphenols are metabolized extensively in tissues and by the colonic microbiota), as well as their membrane permeability and incompatibility with a process of passive diffusion [17].
    Another disadvantage of polyphenols is that they are very unstable and sensitive to environmental factors such as temperature, light, oxygen, acidic pH, and the enzymatic activity in the digestive system. These characteristics can decrease the concentration of polyphenols and even cause a total or partial loss of bioactivity [2]. Thus, in order to have an efficient oral bioavailability, the hydrophilic part of the natural compound (which ensures its dissolution in the gastrointestinal fluids) must be in a balance with the lipophilic part (which has a role in crossing the lipid biomembranes) [18].
    Over the years, attempts have been made to remedy these deficiencies by using various drug delivery systems to improve their bioavailability and therapeutic efficacy [8]. Among the approaches that were evaluated, formulation with cyclodextrins [19], simple emulsions, gels, and lipid nanocapsules [20], nanoemulsion [21], or liposomes [22][23] can be listed. Thus, researchers have managed to produce liposomes in which both hydrophilic and lipophilic substances can be incorporated, with high encapsulation efficiency and controlled drug release [24]. An advantage of these compounds is their ability to change the membrane’s fluidity, thus achieving easier distribution of plant extracts to the target site. At the same time, the extract has a soluble character, thereby readily determining its location in the structure of liposomes since hydrophilic extracts are encapsulated in the aqueous phase, and amphiphilic and lipophilic compounds are found in the lipid layer of the liposome to reduce a material loss [25][26].
    In addition to studies based on polyphenols as therapeutic agents in new therapies and with the development of drug delivery systems, the role of these compounds extends beyond therapeutic agents. They can also be used as primary component modules in drug delivery systems that are innovative. Polyphenols are not only incorporated in drug delivery systems to treat various illnesses, but also frequently employed as fundamental components of novel drug delivery systems due to their significant biological activity. Thus, considering the low toxicity and availability of natural substances, the production of novel drug delivery systems takes advantage of the physical and chemical characteristics of naturally active substances to achieve the design and assembly of drug delivery systems [27].
    Polyphenols’ intrinsic amphiphilic characteristic is, thus, critical for their use as functional components in novel drug delivery systems. Specifically, the hydroxy groups of polyphenols (as a hydrophilic component) are responsible for this, acting as donors or acceptors of hydrogen bonds, thus playing a role in the interactions between polyphenols and a wide variety of bioactive substances or carriers. In contrast, the aromatic benzene unit of polyphenols (as the hydrophobic component) allows other materials to be hydrophobic, which aids in the development of drug delivery methods [27].
    Therefore, due to the chemical structure of polyphenols, they can be combined with a wide variety of materials, such as metals, proteins, polymers, and small molecular compounds through hydrogen bonds, covalent bonds, metal coordination bonding, π–π stacking, and hydrophobic and electrostatic interactions. Polyphenols can not only successfully facilitate drug loading and delivery when combined with other bioactive materials or small molecules, but also safeguard the effective components and nanostructure of drug delivery systems [27].

    3. What Is a Liposome?

    Liposomes were first described as swollen phospholipid systems in 1965 at Cambridge University by Bangham and coworkers [28], while testing the institute’s new electron microscope by applying negative dye to dry phospholipids [29][30]. The main mechanism for obtaining them is via the self-assembly of surfactants and natural/synthetic lipids in an aqueous solution [31]. From a chemical point of view, liposomes are spherical phospholipid vesicles, nanoscopic or microscopic, composed of one or more concentric lipid bilayers, which encompass an aqueous core (Figure 3). They are generally made up of phospholipids and cholesterol, making them readily biodegradable [32]. Thus, the phospholipids used can be natural, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine or obtained by synthesis such as disloyal phosphatidylcholine, destroy phosphatidylcholine, and disloyal phosphatidylethanolamine. After the phospholipid membrane is formed, cholesterol can be incorporated at a high concentration [33].
    Figure 3. Schematic representation of liposomes.

    4. Applications of Liposomes

    As outlined above, liposomes are delivery systems that have the ability to encapsulate and release controlled different types of substances, including drugs, nutraceuticals, and even genes, making their use extremely wide [34][35]. Initially, the applications of liposomes were restricted in the medical field, before being later used in cosmetics. However, over time, their popularity has been expanded to other areas, such as delivering vaccines, hormones, enzymes, and vitamins in the body [36]. Liposomes show great flexibility as they can be injected intravenously, intramuscularly, or subcutaneously (liquid suspensions); furthermore, they can be inhaled (aerosol of liposome suspension or lyophilized powder), applied directly to the skin as a suspension, cream, or gel, or even ingested (any of the physical forms) [37].
    Considering the benefits offered by liposomes, involving the possibility of large-scale production, the natural ingredients (such as eggs, milk, and soy) involved in manufacturing, biocompatibility, and the ability to transport a wide range of bioactive compounds, they are currently used in many areas, as overviewed in this section [36].
    The first popular topic of discussion is drug targeting, allowing to enhance the specificity of a drug that targets the desired cell/tissue. Liposomes can be encapsulated with opsonin and ligands (containing antibodies, apoproteins, hormones). The ligand will specifically recognize the receptor sites and determine the direction of the liposomes to those target sites, where they will accumulate and achieve the anticipated effect. By doing so, liposomes will not be recognized and eliminated by the reticuloendothelial system (liver, spleen, and bone marrow), while the toxicity produced by drugs in untargeted cells/tissues will be minimized [38].
    Due to their basic characteristics, namely, the ability to encapsulate various biological substances that can then be delivered to epidermal cells, liposomes are also used in the pharmaceutical and cosmetic fields, e.g., dermatology. Skin hydration is the most critical aspect in skincare. Accordingly, most applications in the field of cosmetics are concerned with this issue of balancing the moisture of the skin. Liposomes can simply hydrate the skin, thus reducing skin dryness, which is the main factor causing skin aging. In addition to this first applicability of liposomes in cosmetics, they can also encapsulate anti-inflammatory agents, immunostimulants, and enhancers of molecular and cellular detoxification, which can produce some therapeutic effects on several skin problems such as dark circles, wrinkles, and age spots [34].
    Likewise, due to the rapid development of the food industry in recent years, adding functional compounds to food products has gained more attention. Thus, functional compounds that help to control the flavor, color, texture, or preservative properties of food products have been more widely employed in liposomes. However, these functional compounds are sensitive to environmental factors, processing, and conditions in the gastrointestinal tract, whereas encapsulation could remedy these inconveniences, making liposomes the suitable candidates in such cases [36].
    Although there are drawbacks to the degree of encapsulation of polyphenols in liposomes, several studies have reported that both the bioavailability and the efficacy of polyphenols encapsulated in liposomes are improved compared to the free active substance and other transport systems. Various formulations of liposomes showed improved results in terms of the solubility of many polyphenols, for example, resveratrol, quercetin, curcumin, and puerarin [8], as detailed in Table 1.
    Table 1. Liposomal formulations that have been created for polyphenol-related biological research.




    % (w/w)



    Encapsulation Efficiency

    Biological Effects







    method with some modification


    Thin-film hydration


    Ethanol injection















    45% ± 0.2%




    73.7% ± 1.6%





    87.8% ± 4.3%




    46.6% ± 1.0%

    In vivo: antiangiogenic activity and tumor growth inhibition


    Enhanced stability





    Slower release and better accumulation



    More stable during storage


















    Thin-film hydration


    Film hydration
















    78.14% ± 8.04%

    Prostate cancer incidence was minimized, and bioavailability was enhanced


    The toxicity of free resveratrol was considerably lowered


    Enhanced delivery










    Film hydration and lyophilization procedure


    Film hydration and sonication















    87.1% ± 2.7%




    Enhanced solubility, bioavailability, and antitumor activity in vivo



    Maintained higher plasma quercetin concentrations


    Inhibited growth of glioma cancer cells











    Film hydration


    Reverse evaporation technique


    Supercritical fluid technology








    92.56% ± 0.93%


    69.22% ± 0.6%




    Better oral bioavailability


    Higher bioavailability




    Enhanced oral bioavailability










    Film hydration and freeze-drying


    81.59% ± 0.24%

    Better oral bioavailability


    Epigallocatechin-3-gallate (EGCG)

    Film hydration and sonication/extrusion


    Film hydration


    Reverse-phase evaporation method








    84.6% ± 3.8%




    80% ± 3%



    85.79% ± 1.65%

    Protection against deterioration

    Even at lower doses, there was an increase in carcinoma cell death

    Enhanced targeted delivery and controlled release


    Modulated the proliferation of tumor cells









    Film hydration and extrusion


    Probe sonication







    Enhanced bioavailability and antitumor activity


    Better antiangiogenic and anticancer activities





    Film hydration and sonication









    95.43% ± 2.76%




    90.1% ± 2.3%

    Strong anticancer effect on breast cancer

    Enhanced cytotoxicity and cellular uptake

    Enhanced bioavailability and promoted accumulation in tumor






    Film hydration


    Hydration and ultrasound combined


    Improved supercritical carbon dioxide (SC-CO2)
















    Enhanced antioxidant activity

    Enhanced chemical stability and bioavailability




    Enhanced stability and bioavailability









    According to Table 1, the encapsulation ratio varies, even in the case of the same encapsulated polyphenol, and it can be concluded that the encapsulation rate is dependent on the structure of the polyphenol, the lipid composition of the liposome, and its formulation [8].
    The liposome–polyphenol complex has another crucial benefit, which is its increased chemical stability, thereby maintaining long-term efficacy [8] or inducing effects that cannot be achieved otherwise by administering free polyphenols [53]. At the same time, the active polyphenols can be injected into nonorganic solvents due to the improved solubility of the substance in the liposomes, which decreases the systemic toxicity and increases the maximum dose tolerated by the body, thus enabling administration of a higher amount of polyphenols in vivo [8].
    Studies on the use of polyphenols encapsulated in liposomes performed in vitro/in vivo have revealed that they have similar or better efficacy than free polyphenols [39][56]. Therefore, starting from this idea, several researchers have encapsulated different polyphenols in liposomes to observe the effects and benefits of each, a topic that is discussed in the next section (Figure 4).
    Figure 4. Examples of liposomal forms developed for polyphenol biological studies.

    5. Polyphenols Encapsulated into Liposomes and Their Potential Health Benefits

    5.1. Quercetin

    Quercetin (QC) is a flavonoid plant coming from the word “quercetum” (oak forest), which is part of the Fagaceae family and genus Quercus. The literature on QC has highlighted several important characteristics such as its antioxidant, anticarcinogenic, antiviral, anti-obesity, anti-inflammatory, and antihypertensive activities [62]. Due to its antioxidant character, quercetin can eliminate free radicals [63]. This property originates from a large number of conjugated hydroxyl and orbital groups through which QC can donate electrons and hydrogen or eliminate H2O2 and superoxide anions.
    According to existing data, QC has shown anticancer effects on several mechanisms. For example, it has been shown that QC caused cell-cycle arrest in the G2/M phase by activating the p53 tumor suppressor protein, thereby inhibiting the activity of cyclin dependent kinase 2 (CDK2), cyclin A, and cyclin B [64]. In addition, this flavonoid can suppress the synthesis and expression of heat-shock protein and block the signal transduction pathways by inhibiting protein tyrosine kinase and downregulating oncogene expression (c-myc, ki-ras) [65]. Regarding the action of quercetin in angiogenesis, it has been shown that it affects the VEGFR-2 mediated pathway, causing under-expression of the AKT (protein kinase B) regulatory factor, thus inhibiting blood vessel growth and restricting tumor growth in prostate and breast cancer [66]. Quercetin can also determinate apoptosis in tumor cells by stimulating proapoptotic proteins such as BAX and caspases (3, 6, 7, 8, and 9). Furthermore, QC can stop the expression of antiapoptotic proteins such as Bcl-2 and terminate cancer metastasis. In order to form metastases, epithelial-to-mesenchymal transition (EMT), a process that involves downregulation of epithelial-type proteins (e.g., E-cadherin), and stimulation of expression of mesenchymal markers, including N-cadherin and Vimentin, must occur. Thus, in this case, quercetin can decrease the occurrence of EMT by overexpressing E-cadherin and under-expressing N-cadherin and Vimentin [66].
    The most recent investigation reported that QC could inhibit the growth of different types of cancer cells, including colorectal, prostate, liver, pancreatic, breast, kidney, lung, and ovarian, via modulation of various cellular processes (Figure 5). In addition, QC can exhibit selective cytotoxic activity toward cancer cells without producing adverse effects on normal cells [67]. On the other hand, QC has slight aqueous solubility and bioavailability and is rapidly metabolized, and these disadvantages can diminish its effectiveness in treating diseases [68].
    Figure 5. Chemical structure of quercetin and mechanism of action of quercetin through different molecular targets resulting in apoptosis or stopping proliferation.

    5.2. Curcumin

    Curcumin is a natural yellow polyphenolic compound extracted from turmeric roots (Curcuma longa). It is a multifunctional compound that has been widely used in traditional medicine due to its various therapeutic activities in anti-inflammation, antioxidation, antiproliferation, and anti-angiogenesis [69]. Curcumin acts on several pathways, producing growth suppression and angiogenesis, as illustrated in Figure 6.
    Figure 6. Chemical structure of curcumin and mechanism of action of curcumin through different molecular targets, resulting in apoptosis or growth suppression, angiogenesis, invasion, and metastasis of cancers.

    5.3. Honokiol

    Honokiol is a lignan found in several species of the genus Magnolia, which is distributed worldwide [70][71]. Honokiol is obtained by purification of the bark and seed cones of the magnolia tree [72]. It is known that extracts from Magnolia bark are used as traditional herbal medicines in Korea, China and Japan, and other countries [73]. Many lignans with anticancer potential act by shrinking the tumor, decreasing the expression of estrogen, insulin growth factor, vascular endothelial growth factor, and matrix metalloproteinases enzymes, and enhancing caspase 3 [74].
    This polyphenol produces effects on many molecular targets that modulate the expression of genes controlling the different hallmarks of cancer [75]. Mechanisms of action include retarding the cell cycle (via effects on cyclins D and B) [76], inducing apoptosis (by upregulating the expression of proteins that control apoptosis such as Bcl-xL, Bcl-2), inhibiting angiogenesis (via regulation of hypoxia-inducible factor 1-alpha (HIF1α) and VEGF gene expression) [77][78], and interdicting invasion and metastasis [79]. Some of these pathways and molecules implicated are illustrated in Figure 7. Honokiol has also been shown to produce promising results in the case of chemoresistance. It shows chemosensitization effects when combined with well-known chemotherapeutics [75].
    Figure 7. Chemical structure of honokiol and mechanism of action of honokiol through different molecular targets that suppress growth, angiogenesis, and invasion of cancers (adapted from Arora et al., 2012).

    5.4. Resveratrol

    Resveratrol is a stilbenoid natural polyphenol, isolated for the first time in 1939 from Veratrum grandiflorum [80]. Since its first certification, resveratrol has been identified in various plants such as plums, pistachios, berries, and peanuts. However, the most abundant source is represented by fresh grape skin, where it occurs in concentrations as high as 50–100 mg/g [81][82]. In recent years, due to its beneficial effects on health, resveratrol has received the attention of researchers [83]. It is found in two isomeric forms, cis and trans, but the predominant isomer is trans, which has the most potent therapeutic effects due to its conformation [82][84]. In addition, it is also obtained via chemical or biotechnological synthesis from yeast Saccharomyces cerevisiae for industrial applications [85].
    Resveratrol is sensitive to light, pH, and high temperatures due to its unstable hydroxyls and C=C double bond. In this regard, many studies have aimed to increase its stability in an effort to expand its use [86]. The trans form of resveratrol is stable under acidic conditions at room or body temperature, but resveratrol degrades rapidly when the pH is alkaline. Therefore, by lowering the temperature and pH and by limiting the exposure to light and oxygen, the stability of this isomer can be improved [87].
    Similar to the other polyphenols, resveratrol has a low bioavailability due to poor absorption and rapid metabolism of glucuronidated and sulfated compounds, followed by their excretion [88]. Hence, the poor bioavailability of this compound is a major problem in amplifying its effects in humans and, as such, so many approaches have been attempted to increase its bioavailability [89]. The effectiveness of resveratrol depends mainly on a combination of factors such as dosage, method of administration, the origin of the targeted tumor, and other substances present in the diet that may interfere with this polyphenol [83]. Thus, to improve the bioavailability, it is necessary to carry out studies on the delivery routes, the formulations and modulation of resveratrol metabolism, and possible interactions of resveratrol with other food components. On the other hand, another possible approach to its bioavailability is creating novel resveratrol-based derivatives [90].
    Despite the extremely low bioavailability of this polyphenol, recent studies found strong evidence that resveratrol can prevent or delay the onset of cancer, heart disease, ischemic and chemically induced damage, diabetes, pathological inflammation, and viral infections [83]. In particular, resveratrol has shown anticancer effects by altering glycolysis and molecules involved in the cell cycle (resveratrol upregulates p53 protein, thereby downregulating the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [91] and suppressing cancer cell growth (stops cell cycle at G1 and G1/S phases by inducing the expression of CDK inhibitors and proliferation. Resveratrol causes a high production of nitric oxide synthases (NOS), thus inhibiting cell proliferation [92], inducing apoptosis (through the intrinsic pathway via the activation of caspase 3 and caspase 9, the determined release of cytochrome c, upregulation of Bax expression, and downregulation of Bcl-2 expression [91]) promoting antitumor immune responses, and preventing cancer cell adhesion, migration (also reduced by resveratrol through the EGFR/PI3K signaling pathway [93]), and invasion by modulating active molecules and gene expression through various signaling pathways (Figure 8). In addition, different doses of resveratrol may induce different effects, which can sometimes be opposite [94]. Therefore, it is crucial to identify the most effective dose and administration route. Likewise, it has been documented that resveratrol induces cell death in tumor tissues with relatively no effect on normal tissues in the vicinity of the tumor [95]. Mukherjee et al. (2010) reported that lower doses of resveratrol could result in health benefits, while higher doses affect tumor cells via proapoptotic effects [96]. Thus, future studies based on this polyphenol are needed to fully decipher its effects.
    Figure 8. Chemical structure of resveratrol and its mechanism of action through different molecular targets that result in apoptosis or growth suppression and metastasis of cancers.

    5.5. Anthocyanins

    Considering their great health benefits, this section focuses on anthocyanins. Anthocyanins are pigments that are responsible for the various colors (blue, red, purple) of fruits, flowers, and vegetables. They can be stacked in vegetative tissues, where they fulfill the role of protection against biotic and abiotic factors. In nature, anthocyanins are found in the form of glycosides, which have one or more sugars bound to the aglycone nucleus. The chemical structure is C6–C3–C6, with two benzene rings (A and B) and a heterocyclic C ring. Due to this structure, anthocyanins have been shown to have strong antioxidant, anticancer, anti-inflammatory, and cardioprotective activities, as well as effects related to vision improvement [97][98].
    The most frequent anthocyanin aglycones found in plants are delphinidin, cyanidin, petunidin, peonidin, pelargonidin, and malvidin. Nevertheless, these compounds are found in plants at different levels. Cyanidin has the largest proportion in plant tissues (50%), followed by pelargonidin, peonidin, and delphinidin, each representing a percentage of 12%; finally, petunidin and malvidin each make up a percentage of 7%. The unique properties of anthocyanins and anthocyanidins may have an impact on their anticancer effectiveness, antioxidant activities, and bioavailability [99].
    Like other classes of polyphenols, anthocyanins can cause anti-inflammatory and antitumor effects on several types of cancer cell lines such as breast, liver, colon, prostate, ovarian, and skin cancers. These anticancer effects appear to be linked to cancer cell growth suppression via increased oxidative stress biomarkers and induction of apoptosis via the mitochondrial route [100]. As a consequence, they seem to be attractive therapeutic options.
    Anthocyanins work as antioxidants by scavenging free radicals and lowering lipid peroxidation and ROS levels. Numerous studies have also reported that anthocyanins can mediate oxidative stress in many signaling pathways such as PI3K/Akt/mTOR and Ras/ERK/MAPK, targeting their component molecules. In addition, anthocyanin-rich formulations have been found to suppress H2O2 and TNF-α-induced VEGF expression, as well as promote caspase pathways, thereby exerting anticarcinogenic and antiangiogenic effects. They also exhibit anti-inflammatory activities by significantly reducing cyclooxygenase-2 (COX-2), inflammatory interleukins (ILs), inducible nitric oxide synthase iNOS, and NF-κB. Furthermore, anthocyanins can stimulate the apoptosis of cancer cells by activating cell death receptors such as BAX and Bcl-2 and caspases 3, 7, and 8 [101]. Additionally, anthocyanin extracts were reported to mediate cell metastasis by inhibiting matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9) through the PI3K signaling pathway [99]. All these pathways and the molecules involved are presented in Figure 9.
    Figure 9. Chemical structure of anthocyanins and their mechanism of action through different molecular targets that result in apoptosis or suppressing growth and metastasis of cancers.

    5.6. Epigallocatechin-3-Gallate (EGCG)

    Tea is one of the most widely consumed beverages worldwide. Green tea (Camellia sinensis), which is made from unfermented leaves, has been demonstrated to have the highest concentration of effective antioxidants [102]. In this type of tea are found four flavanol derivatives epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) [103]. The main polyphenolic component and the most abundant and physiologically active catechin found in green tea is epigallocatechin-3-gallate (EGCG), which is an ester of epigallocatechin and gallic acid [104][105]. EGCG is a flavone-3-ol type polyphenol, which has in its chemical structure eight free hydroxyl groups, an arrangement that makes it bioactive with versatile biological functions. In addition, aside from some tannin compounds, EGCG has the strongest free-radical-scavenging capacity among common phenolic compounds [106].
    This compound has been intensively studied in recent years; research has shown its beneficial effects through its antioxidant, antibacterial, anticancer, antidiabetic, and antiangiogenic properties [105]. The chemopreventive effect of EGCG has a solid basis in studies conducted both in vivo and in vitro in a number of cancers: breast, duodenum, prostate, colon, skin, lung, cervical, and liver [103][107]. Thus, EGCG interferes with various mechanisms such as cell proliferation and differentiation, apoptosis, angiogenesis, and metastasis, with inhibitory effects on several processes in diverse types of cancer such as initiation, promotion, and progression. For example, EGCG has been shown to induce apoptosis in breast cancer by activating apoptosis-related proteins, such as caspase 3 and 9, and in cholangiocarcinoma by inducing apoptotic molecular signals, such as Bax and cytochrome c [104]. Furthermore, EGCG inhibits invasion and epithelial–mesenchymal transition through modulation of MMP-2, MMP-9, and Vimentin [108]. In addition, EGCG has been shown to stop cell division in a variety of cell lines at different stages of the cell cycle [107]. The anticancer effects of EGCG occur via several signal transmission pathways such as MAPK and PI3K/AKT, as presented in Figure 10 [109].
    Figure 10. Chemical structure of epigallocatechin-3-gallate and its mechanism of action through different molecular targets that result in apoptosis or growth suppression and metastasis of cancers.

    This entry is adapted from 10.3390/ph14100946


    1. Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047.
    2. Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E.B. Lipid Nanocarriers for the Loading of Polyphenols—A Comprehensive Review. Adv. Colloid Interface Sci. 2018, 260, 85–94.
    3. Mocanu, M.-M.; Nagy, P.; Szöllősi, J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015, 20, 22578–22620.
    4. El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review: Nutraceutical Polyphenols. Int. J. Food Sci. Technol. 2009, 44, 2512–2518.
    5. De Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem. 2021, 338, 127535.
    6. Boccellino, M.; D’Angelo, S. Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. Int. J. Mol. Sci. 2020, 21, 5642.
    7. Parmenter, B.H.; Croft, K.D.; Hodgson, J.M.; Dalgaard, F.; Bondonno, C.P.; Lewis, J.R.; Cassidy, A.; Scalbert, A.; Bondonno, N.P. An Overview and Update on the Epidemiology of Flavonoid Intake and Cardiovascular Disease Risk. Food Funct. 2020, 11, 6777–6806.
    8. Mignet, N.; Seguin, J.; Chabot, G. Bioavailability of Polyphenol Liposomes: A Challenge Ahead. Pharmaceutics 2013, 5, 457–471.
    9. Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901.
    10. Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246.
    11. Perron, N.R.; Brumaghim, J.L. Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100.
    12. Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042.
    13. Zhou, B.; Wu, L.-M.; Yang, L.; Liu, Z.-L. Evidence for α-Tocopherol Regeneration Reaction of Green Tea Polyphenols in SDS Micelles. Free Radic. Biol. Med. 2005, 38, 78–84.
    14. Du, Y.; Guo, H.; Lou, H. Grape Seed Polyphenols Protect Cardiac Cells from Apoptosis via Induction of Endogenous Antioxidant Enzymes. J. Agric. Food Chem. 2007, 55, 1695–1701.
    15. Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics 2011, 3, 793–829.
    16. D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342.
    17. Watson, R.R.; Preedy, V.R.; Zibadi, S. (Eds.) Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2014.
    18. Parisi, O.I.; Puoci, F.; Restuccia, D.; Farina, G.; Iemma, F.; Picci, N. Polyphenols and Their Formulations. In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 29–45.
    19. Pralhad, T.; Rajendrakumar, K. Study of Freeze-Dried Quercetin–Cyclodextrin Binary Systems by DSC, FT-IR, X-Ray Diffraction and SEM Analysis. J. Pharm. Biomed. Anal. 2004, 34, 333–339.
    20. Barras, A.; Mezzetti, A.; Richard, A.; Lazzaroni, S.; Roux, S.; Melnyk, P.; Betbeder, D.; Monfilliette-Dupont, N. Formulation and Characterization of Polyphenol-Loaded Lipid Nanocapsules. Int. J. Pharm. 2009, 379, 270–277.
    21. Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion Formulation of Fisetin Improves Bioavailability and Antitumour Activity in Mice. Int. J. Pharm. 2012, 427, 452–459.
    22. Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal Encapsulation of the Natural Flavonoid Fisetin Improves Bioavailability and Antitumor Efficacy. Int. J. Pharm. 2013, 444, 146–154.
    23. Yuan, Z.; Chen, L.; Fan, L.; Tang, M.; Yang, G.; Yang, H.; Du, X.; Wang, G.; Yao, W.; Zhao, Q.; et al. Liposomal Quercetin Efficiently Suppresses Growth of Solid Tumors in Murine Models. Clin. Cancer Res. 2006, 12, 3193–3199.
    24. Kyriakoudi, A.; Spanidi, E.; Mourtzinos, I.; Gardikis, K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. Plants 2021, 10, 1238.
    25. Ganesan, P.; Choi, D.K. Current Application of Phytocompound-Based Nanocosmeceuticals for Beauty and Skin Therapy. Int. J. Nanomed. 2016, 11, 1987.
    26. Wu, X.; Guy, R.H. Applications of Nanoparticles in Topical Drug Delivery and in Cosmetics. J. Drug Deliv. Sci. Technol. 2009, 19, 371–384.
    27. Chen, Z.; Farag, M.A.; Zhong, Z.; Zhang, C.; Yang, Y.; Wang, S.; Wang, Y. Multifaceted Role of Phyto-Derived Polyphenols in Nanodrug Delivery Systems. Adv. Drug Deliv. Rev. 2021, 176, 113870.
    28. Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27.
    29. Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of Liposomes in Medicine and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 381–391.
    30. Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery; IntechOpen: London, UK, 2014.
    31. Lombardo, D.; Calandra, P.; Barreca, D.; Magazù, S.; Kiselev, M.A. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials 2016, 6, 125.
    32. William, B.; Noémie, P.; Brigitte, E.; Géraldine, P. Supercritical Fluid Methods: An Alternative to Conventional Methods to Prepare Liposomes. Chem. Eng. J. 2020, 383, 123106.
    33. Dwivedi, C.; Verma, S. Review on Preparation and Characterization of Liposomes with Application. Int. J. Sci. Innov. Res. 2013, 2, 23.
    34. Karami, N.; Moghimipour, E.; Salimi, A. Liposomes as a Novel Drug Delivery System: Fundamental and Pharmaceutical Application. Asian J. Pharm. (AJP) Free. Full Text Artic. Asian J. Pharm. 2018, 12, S31–S41.
    35. Liu, W.; Ye, A.; Singh, H. Progress in Applications of Liposomes in Food Systems. In Microencapsulation and Microspheres for Food Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 151–170.
    36. Emami, S.; Azadmard-Damirchi, S.; Peighambardoust, S.H.; Valizadeh, H.; Hesari, J. Liposomes as Carrier Vehicles for Functional Compounds in Food Sector. J. Exp. Nanosci. 2016, 11, 737–759.
    37. Keller, B.C. Liposomes in Nutrition. Trends Food Sci. Technol. 2001, 12, 25–31.
    38. Barani, H.; Montazer, M. A Review on Applications of Liposomes in Textile Processing. J. Liposome Res. 2008, 18, 249–262.
    39. Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-Encapsulated Curcumin: In Vitro and In Vivo Effects on Proliferation, Apoptosis, Signaling, and Angiogenesis. Cancer 2005, 104, 1322–1331.
    40. Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal Curcumin with and without Oxaliplatin: Effects on Cell Growth, Apoptosis, and Angiogenesis in Colorectal Cancer. Mol. Cancer Ther. 2007, 6, 1276–1282.
    41. Wei, X.-Q.; Zhu, J.-F.; Wang, X.-B.; Ba, K. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber PH of Liposomes. ACS Omega 2020, 5, 1120–1126.
    42. Pamunuwa, G.; Karunaratne, V.; Karunaratne, D.N. Effect of Lipid Composition on In Vitro Release and Skin Deposition of Curcumin Encapsulated Liposomes. J. Nanomater. 2016, 2016, e4535790.
    43. Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C. Improved Bioavailability of Curcumin in Liposomes Prepared Using a PH-Driven, Organic Solvent-Free, Easily Scalable Process. RSC Adv. 2017, 7, 25978–25986.
    44. Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome Encapsulation of Curcumin and Resveratrol in Combination Reduces Prostate Cancer Incidence in PTEN Knockout Mice. Int. J. Cancer 2009, 125, 1–8.
    45. Zhao, Y.N.; Cao, Y.N.; Sun, J.; Liang, Z.; Wu, Q.; Cui, S.H.; Zhi, D.F.; Guo, S.T.; Zhen, Y.H.; Zhang, S.B. Anti-Breast Cancer Activity of Resveratrol Encapsulated in Liposomes. J. Mater. Chem. B 2020, 8, 27–37.
    46. Jagwani, S.; Jalalpure, S.; Dhamecha, D.; Jadhav, K.; Bohara, R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater. Sci. Eng. 2020, 6, 4969–4984.
    47. Tang, L.; Li, K.; Zhang, Y.; Li, H.; Li, A.; Xu, Y.; Wei, B. Quercetin Liposomes Ameliorate Streptozotocin-Induced Diabetic Nephropathy in Diabetic Rats. Sci. Rep. 2020, 10, 2440.
    48. Gang, W.; Jie, W.J.; Ping, Z.L.; Ming, D.S.; Ying, L.J.; Lei, W.; Fang, Y. Liposomal Quercetin: Evaluating Drug Delivery In Vitro and Biodistribution In Vivo. Expert Opin. Drug Deliv. 2012, 9, 599–613.
    49. Yanyu, X.; Yunmei, S.; Zhipeng, C.; Qineng, P. Preparation of Silymarin Proliposome: A New Way to Increase Oral Bioavailability of Silymarin in Beagle Dogs. Int. J. Pharm. 2006, 319, 162–168.
    50. El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Increasing Bioavailability of Silymarin Using a Buccal Liposomal Delivery System: Preparation and Experimental Design Investigation. Int. J. Pharm. 2006, 308, 140–148.
    51. Yang, G.; Zhao, Y.; Zhang, Y.; Dang, B.; Liu, Y.; Feng, N. Enhanced Oral Bioavailability of Silymarin Using Liposomes Containing a Bile Salt: Preparation by Supercritical Fluid Technology and Evaluation In Vitro and In Vivo. Int. J. Nanomed. 2015, 10, 6633.
    52. Chu, C.; Tong, S.; Xu, Y.; Wang, L.; Fu, M.; Ge, Y.; Yu, J.; Xu, X. Proliposomes for Oral Delivery of Dehydrosilymarin: Preparation and Evaluation In Vitro and In Vivo. Acta Pharmacol. Sin. 2011, 32, 973–980.
    53. Fang, J.-Y.; Lee, W.-R.; Shen, S.-C.; Huang, Y.-L. Effect of Liposome Encapsulation of Tea Catechins on Their Accumulation in Basal Cell Carcinomas. J. Dermatol. Sci. 2006, 42, 101–109.
    54. Marwah, M.; Perrie, Y.; Badhan, R.K.S.; Lowry, D. Intracellular Uptake of EGCG-Loaded Deformable Controlled Release Liposomes for Skin Cancer. J. Liposome Res. 2020, 30, 136–149.
    55. Luo, X.; Guan, R.; Chen, X.; Tao, M.; Ma, J.; Zhao, J. Optimization on Condition of Epigallocatechin-3-Gallate (EGCG) Nanoliposomes by Response Surface Methodology and Cellular Uptake Studies in Caco-2 Cells. Nanoscale Res. Lett. 2014, 9, 291.
    56. Mignet, N.; Seguin, J.; Ramos Romano, M.; Brullé, L.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Chabot, G.G. Development of a Liposomal Formulation of the Natural Flavonoid Fisetin. Int. J. Pharm. 2012, 423, 69–76.
    57. Ju, R.-J.; Cheng, L.; Qiu, X.; Liu, S.; Song, X.-L.; Peng, X.-M.; Wang, T.; Li, C.-Q.; Li, X.-T. Hyaluronic Acid Modified Daunorubicin plus Honokiol Cationic Liposomes for the Treatment of Breast Cancer along with the Elimination Vasculogenic Mimicry Channels. J. Drug Target. 2018, 26, 793–805.
    58. Zhou, C.; Guo, C.; Li, W.; Zhao, J.; Yang, Q.; Tan, T.; Wan, Z.; Dong, J.; Song, X.; Gong, T. A Novel Honokiol Liposome: Formulation, Pharmacokinetics, and Antitumor Studies. Drug Dev. Ind. Pharm. 2018, 44, 2005–2012.
    59. Hwang, J.-M.; Kuo, H.-C.; Lin, C.-T.; Kao, E.-S. Inhibitory Effect of Liposome-Encapsulated Anthocyanin on Melanogenesis in Human Melanocytes. Pharm. Biol. 2013, 51, 941–947.
    60. Homayoonfal, M.; Mousavi, S.M.; Kiani, H.; Askari, G.; Desobry, S.; Arab-Tehrany, E. Encapsulation of Berberis Vulgaris Anthocyanins into Nanoliposome Composed of Rapeseed Lecithin: A Comprehensive Study on Physicochemical Characteristics and Biocompatibility. Foods 2021, 10, 492.
    61. Zhao, L.; Temelli, F.; Chen, L. Encapsulation of Anthocyanin in Liposomes Using Supercritical Carbon Dioxide: Effects of Anthocyanin and Sterol Concentrations. J. Funct. Foods 2017, 34, 159–167.
    62. Saraswat, A.L.; Maher, T.J. Development and Optimization of Stealth Liposomal System for Enhanced In Vitro Cytotoxic Effect of Quercetin. J. Drug Deliv. Sci. Technol. 2020, 55, 101477.
    63. Daneshniya, M.; Maleki, M.H.; Liavali, H.; Hassanjani, M.; Keshavarz Bahadori, N.; Mohammadi, M.; Jalilvand Nezhad, H. Antioxidant Activity of Flavonoids as an Important Phytochemical Compound in Plants. In Proceedings of the 2nd International Congress on Engineering, Technology and Innovation, Darmstadt, Germany, 6 November 2020.
    64. Chou, C.-C.; Yang, J.-S.; Lu, H.-F.; Ip, S.-W.; Lo, C.; Wu, C.-C.; Lin, J.-P.; Tang, N.-Y.; Chung, J.-G.; Chou, M.-J.; et al. Quercetin-Mediated Cell Cycle Arrest and Apoptosis Involving Activation of a Caspase Cascade through the Mitochondrial Pathway in Human Breast Cancer MCF-7 Cells. Arch. Pharm. Res. 2010, 33, 1181–1191.
    65. Long, Q.; Xie, Y.; Huang, Y.; Wu, Q.; Zhang, H.; Xiong, S.; Liu, Y.; Chen, L.; Wei, Y.; Zhao, X.; et al. Induction of Apoptosis and Inhibition of Angiogenesis by PEGylated Liposomal Quercetin in Both Cisplatin-Sensitive and Cisplatin-Resistant Ovarian Cancers. J. Biomed. Nanotechnol. 2013, 9, 965–975.
    66. Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. 2020, 121, 109604.
    67. Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Fallahi, F.; Taghavipour, M.; Ghasemi, Y.; Akbari, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; et al. Quercetin and Cancer: New Insights into Its Therapeutic Effects on Ovarian Cancer Cells. Cell Biosci. 2020, 10, 32.
    68. Kumari, A.; Kumar, V.; Yadav, S.K. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach. PLoS ONE 2012, 7, e41230.
    69. Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and MiRNAs. Int. J. Biol. Sci. 2019, 15, 1200–1214.
    70. Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A Novel Natural Agent for Cancer Prevention and Therapy. Curr. Mol. Med. 2012, 12, 1244–1252.
    71. Esumi, T.; Makado, G.; Zhai, H.; Shimizu, Y.; Mitsumoto, Y.; Fukuyama, Y. Efficient Synthesis and Structure–Activity Relationship of Honokiol, a Neurotrophic Biphenyl-Type Neolignan. Bioorg. Med. Chem. Lett. 2004, 14, 2621–2625.
    72. Ishitsuka, K.; Hideshima, T.; Hamasaki, M.; Raje, N.; Kumar, S.; Hideshima, H.; Shiraishi, N.; Yasui, H.; Roccaro, A.M.; Richardson, P.; et al. Honokiol Overcomes Conventional Drug Resistance in Human Multiple Myeloma by Induction of Caspase-Dependent and -Independent Apoptosis. Blood 2005, 106, 1794–1800.
    73. Lee, Y.-J.; Lee, Y.M.; Lee, C.-K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic Applications of Compounds in the Magnolia Family. Pharmacol. Ther. 2011, 130, 157–176.
    74. Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; et al. Anticancer Potentiality of Lignan Rich Fraction of Six Flaxseed Cultivars. Sci. Rep. 2018, 8, 544.
    75. Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for Cancer Therapeutics: A Traditional Medicine That Can Modulate Multiple Oncogenic Targets. Pharmacol. Res. 2019, 144, 192–209.
    76. Qiu, N.; Cai, L.; Xie, D.; Wang, G.; Wu, W.; Zhang, Y.; Song, H.; Yin, H.; Chen, L. Synthesis, Structural and In Vitro Studies of Well-Dispersed Monomethoxy-Poly(Ethylene Glycol)–Honokiol Conjugate Micelles. Biomed. Mater. 2010, 5, 065006.
    77. Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; et al. Honokiol, a Small Molecular Weight Natural Product, Inhibits Angiogenesis In Vitro and Tumor Growth In Vivo *. J. Biol. Chem. 2003, 278, 35501–35507.
    78. Li, Z.; Liu, Y.; Zhao, X.; Pan, X.; Yin, R.; Huang, C.; Chen, L.; Wei, Y. Honokiol, a Natural Therapeutic Candidate, Induces Apoptosis and Inhibits Angiogenesis of Ovarian Tumor Cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 140, 95–102.
    79. Yang, J.; Pei, H.; Luo, H.; Fu, A.; Yang, H.; Hu, J.; Zhao, C.; Chai, L.; Chen, X.; Shao, X.; et al. Non-Toxic Dose of Liposomal Honokiol Suppresses Metastasis of Hepatocellular Carcinoma through Destabilizing EGFR and Inhibiting the Downstream Pathways. Oncotarget 2016, 8, 915–932.
    80. Pezzuto, J. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol. Ther. 2018, 27, 1–14.
    81. Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A Multitargeted Agent for Age-Associated Chronic Diseases. Cell Cycle 2008, 7, 1020–1035.
    82. Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7, 706–718.
    83. Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The In Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506.
    84. Cardile, V.; Chillemi, R.; Lombardo, L.; Sciuto, S.; Spatafora, C.; Tringali, C. Antiproliferative Activity of Methylated Analogues of E- and Z-Resveratrol. Z. Naturforschung C 2007, 62, 189–195.
    85. Wang, Y.; Halls, C.; Zhang, J.; Matsuno, M.; Zhang, Y.; Yu, O. Stepwise Increase of Resveratrol Biosynthesis in Yeast Saccharomyces Cerevisiae by Metabolic Engineering. Metab. Eng. 2011, 13, 455–463.
    86. Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404.
    87. Zupančič, Š.; Lavrič, Z.; Kristl, J. Stability and Solubility of Trans-Resveratrol Are Strongly Influenced by PH and Temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204.
    88. Subramanian, L.; Youssef, S.; Bhattacharya, S.; Kenealey, J.; Polans, A.S.; van Ginkel, P.R. Resveratrol: Challenges in Translation to the Clinic—A Critical Discussion. Clin. Cancer Res. 2010, 16, 5942–5948.
    89. Smoliga, J.M.; Blanchard, O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability Is the Problem, What Is the Solution? Molecules 2014, 19, 17154–17172.
    90. Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of Resveratrol: What Formulation Solutions to Bioavailability Limitations? J. Control. Release 2012, 158, 182–193.
    91. Han, G.; Xia, J.; Gao, J.; Inagaki, Y.; Tang, W.; Kokudo, N. Anti-Tumor Effects and Cellular Mechanisms of Resveratrol. Drug Discov. Ther. 2015, 9, 1–12.
    92. Shankar, S.; Gyanendra, S.; Rakesh, K.S. Chemoprevention by Resveratrol: Molecular Mechanisms and Therapeutic Potential. Front. Biosci. 2007, 12, 4839.
    93. Lee, M.-F.; Pan, M.-H.; Chiou, Y.-S.; Cheng, A.-C.; Huang, H. Resveratrol Modulates MED28 (Magicin/EG-1) Expression and Inhibits Epidermal Growth Factor (EGF)-Induced Migration in MDA-MB-231 Human Breast Cancer Cells. J. Agric. Food Chem. 2011, 59, 11853–11861.
    94. Meng, X.; Zhou, J.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 340.
    95. Van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol Inhibits Tumor Growth of Human Neuroblastoma and Mediates Apoptosis by Directly Targeting Mitochondria. Clin. Cancer Res. 2007, 13, 5162–5169.
    96. Mukherjee, S.; Dudley, J.I.; Das, D.K. Dose-Dependency of Resveratrol in Providing Health Benefits. Dose-Response 2010, 8, 478–500.
    97. Chi, J.; Ge, J.; Yue, X.; Liang, J.; Sun, Y.; Gao, X.; Yue, P. Preparation of Nanoliposomal Carriers to Improve the Stability of Anthocyanins. LWT 2019, 109, 101–107.
    98. Diaconeasa, Z.; Frond, A.; Stirbu, I.; Rugină, D.; Socaciu, C. Anthocyanins-Smart Molecules for Cancer Prevention. In Phytochemicals-Source of Antioxidants and Role in Disease Prevention; Asao, T., Asaduzzaman, M., Eds.; IntechOpen: London, UK, 2018.
    99. Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8, 336.
    100. Fernández, J.; García, L.; Monte, J.; Villar, C.J.; Lombó, F. Functional Anthocyanin-Rich Sausages Diminish Colorectal Cancer in an Animal Model and Reduce Pro-Inflammatory Bacteria in the Intestinal Microbiota. Genes 2018, 9, 133.
    101. Fakhri, S.; Khodamorady, M.; Naseri, M.; Farzaei, M.H.; Khan, H. The Ameliorating Effects of Anthocyanins on the Cross-Linked Signaling Pathways of Cancer Dysregulated Metabolism. Pharmacol. Res. 2020, 159, 104895.
    102. Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin. Ther. Pat. 2016, 26, 907–916.
    103. Sanni, O.; Enebi, D. A Multidisciplinary Research Book; Maharani Kasiswari College Kolkata: West Bengal, India, 2021.
    104. Aggarwal, V.; Tuli, H.S.; Tania, M.; Srivastava, S.; Ritzer, E.E.; Pandey, A.; Aggarwal, D.; Barwal, T.S.; Jain, A.; Kaur, G.; et al. Molecular Mechanisms of Action of Epigallocatechin Gallate in Cancer: Recent Trends and Advancement. Semin. Cancer Biol. 2020, in press.
    105. Chen, W.; Zou, M.; Ma, X.; Lv, R.; Ding, T.; Liu, D. Co-Encapsulation of EGCG and Quercetin in Liposomes for Optimum Antioxidant Activity. J. Food Sci. 2018, 84, 111–120.
    106. Gan, R.-Y.; Li, H.-B.; Sui, Z.-Q.; Corke, H. Absorption, Metabolism, Anti-Cancer Effect and Molecular Targets of Epigallocatechin Gallate (EGCG): An Updated Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941.
    107. Wang, Y.-Q.; Lu, J.-L.; Liang, Y.-R.; Li, Q.-S. Suppressive Effects of EGCG on Cervical Cancer. Molecules 2018, 23, 2334.
    108. Rady, I.; Mohamed, H.; Rady, M.; Siddiqui, I.A.; Mukhtar, H. Cancer Preventive and Therapeutic Effects of EGCG, the Major Polyphenol in Green Tea. Egypt. J. Basic Appl. Sci. 2018, 5, 1–23.
    109. Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-Gallate for Different Treatments. BioMed Res. Int. 2017, 2017, 5615647.