Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1288 word(s) 1288 2021-07-23 08:12:29 |
2 The format is correct Meta information modification 1288 2021-09-02 05:52:24 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Di Micco, R. PET/MRI in Axillary Staging. Encyclopedia. Available online: https://encyclopedia.pub/entry/13808 (accessed on 16 April 2024).
Di Micco R. PET/MRI in Axillary Staging. Encyclopedia. Available at: https://encyclopedia.pub/entry/13808. Accessed April 16, 2024.
Di Micco, Rosa. "PET/MRI in Axillary Staging" Encyclopedia, https://encyclopedia.pub/entry/13808 (accessed April 16, 2024).
Di Micco, R. (2021, September 01). PET/MRI in Axillary Staging. In Encyclopedia. https://encyclopedia.pub/entry/13808
Di Micco, Rosa. "PET/MRI in Axillary Staging." Encyclopedia. Web. 01 September, 2021.
PET/MRI in Axillary Staging
Edit

Axillary surgery in breast cancer (BC) is no longer a therapeutic procedure but has become a purely staging procedure. The progressive improvement in imaging techniques has paved the way to the hypothesis that prognostic information on nodal status deriving from surgery could be obtained with an accurate diagnostic exam. Positron emission tomography/magnetic resonance imaging (PET/MRI) is a relatively new imaging tool and its role in breast cancer patients is still under investigation.

breast cancer PET/MRI sentinel node biopsy

1. Introduction

Modern diagnostic imaging tools provide an accurate local and systemic staging in order to plan the primary treatment and to tailor the best surgical procedure. Whilst mammography, ultrasound (US) and magnetic resonance imaging (MRI) represent an excellent option to stage the T, staging the axilla with imaging is still challenging. To date, several studies have demonstrated the limitations of axillary ultrasound (Ax-US); these include the fact that it is an operator-dependent technique, its sensitivity ranges from 23% to 80% and also, it is unable to estimate the true axillary tumor burden [1][2]. Similarly, other tools such as standard breast MRI [3], Positron Emission Mammography (PEM) [4], PET/CT [5] are not accurate enough to predict axillary stage. On the one hand, two large meta-analyses have shown that Ax-US and selective needle biopsy correctly identifies around 50–55% of node-positive patients [2][6]. On the other hand, when considering the tumor burden, having abnormal nodes on Ax-US, mammogram and MRI often equates to having only 1–2 positive sentinel nodes that do not always change surgical plans [3][7][8]. However, the accuracy is not excellent and even when Ax-US identifies fewer than two abnormal nodes, patients are still more likely to have more than three positive nodes [9].

At first, axillary surgery had a curative intent and axillary dissection (AD) was always indicated; thereafter, SNB replaced AD and axillary surgery was more intended as a way to derive information on axillary status and plan adjuvant treatments. In fact, historical trials demonstrated no survival advantage in performing AD, and showed that it could cause more complications, long-term morbidities and, indeed, a worse quality of life [10][11][12][13]. Over time, AD has been progressively abandoned: IBCSG 23-01, ACOSOG Z0011 and AMAROS trials showed no survival advantage in completing AD in cT1-2 tumors with a positive sentinel node [12][13][14]. In parallel, primary systemic therapy (PST) has started to downstage positive axillae where AD was initially indicated and de-escalate final axillary surgery [15].
Considering this gradual switch in the role of axillary surgery from a therapeutic to a staging procedure, the role of imaging has strongly increased. Ideally, in the future, imaging might even replace surgery in the axillary staging of BC patients [16][17], while still providing reliable information to guide medical treatments. Today, systemic therapy is increasingly based on tumor biology rather than on nodal status, and gene expression signatures can also help decide on adjuvant treatment [18]. In this context, achievement of the most accurate preoperative imaging assessment of the axilla, in order to decide the most appropriate treatment for each patient, is an unmet need.

2. The Role of PET/MRI in Breast Cancer

PET/MRI is a relatively new imaging tool, and its field of application is still being studied. It was introduced in 2011 in the USA and UE, offering the potential to combine the specificity obtained by the functional imaging of PET with the superior sensitivity of MRI, and provide relevant information of higher diagnostic accuracy [19]. In particular, the fully integrated PET/MRI system provides a simultaneous imaging acquisition [20].

As regards BC, the application of PET/MRI was studied in four different settings: for preoperative staging at diagnosis, for follow-up staging, to predict the prognosis and the response to therapy (Table 1).

Table 1. Previous studies on PET/MRI in breast cancer patients divided according to the main objective of the exam into four groups: staging, follow-up, prognosis and response to therapy. (Nr.BC/Tot pts.: Number of breast cancer patients/total patients; NA: not available; WB: whole-body PET/MRI; B: breast PET/MRI).
Category Group Reference Total Number of Patients
Nr. BC/tot. pts. (%)
Study Design Patient Position Type of Acquisition
STAGING Catalano, O.A., 2013 [21]
Huellner, M.W., 2014 [22]
Drzezga, A., 2012 [23]
Appenzeller, P., 2013 [24]
Wiesmuller, M., 2013 [25]
Kirchner, J., 2018 [26]
Botsikas, D., 2019 [27]
Pace, L., 2014 [28]
Kong, E., 2014 [29]
Melsaether, A.N., 2016 [30]
Van Nijnatten, T.J., 2018 [31]
Taneja, S., 2014 [32]
Grueneisen, J., 2015 [33]
Botsikas, D., 2016 [34]
Catalano, O.A., 2017 [35]
Goorts B., 2017 [36]
Kirchner, J., 2020 [37]
Bruckmann, N.M., 2020 [38]
Bruckmann, N.M., 2021 [39]
35/134 (26.1%)
5/106 (4.8%)
3/32 (9.4%)
7/63 (11.1%)
3/46 (6.5%)
38/38 (100%)
80/80 (100%)
36/36 (100%)
42/42 (100%)
51/51 (100%)
12/12 (100%)
36/36 (100%)
49/49 (100%)
58/58 (100%)
51/51 (100%)
40/40 (100%)
56/56 (100%)
104/104 (100%)
154/154 (100%)
retrospective
prospective
prospective
prospective
prospective
prospective
prospective
prospective
prospective
prospective
prospective
retrospective
prospective
retrospective
retrospective
prospective
prospective
prospective
prospective
supine
supine
supine
supine
supine
supine WB, prone B
supine WB, prone B
supine
supine WB, prone B
supine
prone
supine WB, prone B
prone
supine WB, prone B
NA
prone
supine WB, prone B
supine WB, prone B
supine
simultaneous
sequential
simultaneous
sequential
simultaneous
simultaneous
sequential
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
sequential
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
FOLLOW-UP Grueneisen, J., 2017 [40]
Sawicki, L.M., 2016 [41]
Pujara, A.C., 2016 [42]
Beiderwellen, K., 2013 [43]
Chandarana, H., 2013 [44]
Rauscher, I., 2014 [45]
Catalano, O.A., 2015 [46]
Raad, R.A., 2016 [47]
Ishii S., 2016 [48]
Kirchner, J., 2017 [49]
Sonni, I., 2019 [50]
36/36 (100%)
21/21 (100%)
35/35 (100%)
10/70 (14%)
10/32 (31.2%)
4/40 (10%)
109/109 (100%)
15/208 (7.2%)
33/123 (26.8%)
2/41 (5%)
23/74 (31%)
prospective
prospective
retrospective
prospective
prospective
prospective
retrospective
retrospective
prospective
prospective
prospective
supine
NA
prone
NA
NA
NA
NA
NA
NA
NA
NA
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
PROGNOSIS Schiano, C., 2020 [51]
Margolis, N.E., 2016 [52]
Catalano, O.A., 2017 [53]
Jena, A., 2017 [54]
Jena, A., 2017 [55]
Kong, E., 2018 [56]
Incoronato, M., 2018 [57]
Inglese, M., 2019 [58]
Incoronato, M., 2019 [59]
Morawitz, J., 2021 [60]
Murakami, W., 2020 [61]
Carmona-Bozo, J.C., 2021 [62]
40/217 (18.4%)
12/12 (100%)
21/21 (100%)
69/69 (100%)
98//98 (100%)
46/46 (100%)
50/50 (100%)
46/46 (100%)
77/155(49.7%)
56/56 (100%)
55/55 (100%)
32/32 (100%)
retrospective
prospective
retrospective
prospective
prospective
prospective
prospective
prospective
prospective
prospective
retrospective
prospective
NA
prone
supine WB, prone B
supine WB, prone B
prone
prone
prone
prone
supine WB, prone B
prone
supine WB, prone B
prone
simultaneous simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous
RESPONSE Jena, A., 2017 [63]
Wang, J., 2017 [64]
Romeo, V., 2017 [65]
Cho, N., 2018 [66]
Andreassen, M.M.S., 2020 [67]
50/50 (100%)
14/14 (100%)
4/4 (100%)
26/26 (100%)
24/24 (100%)
prospective
prospective
prospective
prospective
prospective
supine WB, prone B
prone
NA
supine WB, prone B
NA
simultaneous
simultaneous
simultaneous
simultaneous
simultaneous

On the one hand, the advantages of this hybrid diagnostic tool are a lower radiation dose when compared to PET/CT, better inter-observer agreement, a one-stage exam and more accurate detection of brain, bone and liver metastases. On the other hand, PET/MRI is still an expensive and time-consuming imaging method, which is not available everywhere; despite the attractiveness of performing a single exam when both PET and MR imaging are indicated, PET/MRI also exhibits other limitations (i.e., long duration, MR truncation, PET/MRI misregistration, etc.) [68].

To conclude, the role of PET/MRI in the BC setting is not yet well defined, although it shows good accuracy in BC local and systemic staging and could be considered in both monitoring and predicting the response to PST. However, the heterogeneity of the studies reported and the variability of the PET/MRI approach limit the comparison and the summation of data. Hence, current evidence is not sufficient to derive standard indications; ongoing and future research on PET/MRI could help clarify its role and establish whether it may represent a useful diagnostic and prognostic tool, or if it needs to be replaced or integrated with other conventional diagnostic tools.

3. PET/MRI in Axillary Staging: Current Evidence

Several studies have investigated the power of PET/MRI in staging the axilla; the results are encouraging but preliminary, due to the small sample size and inhomogeneous study population and design (Table 2).

Table 2. Previous studies on PET/MRI evaluating the axillary status in breast cancer (NA = not available, WB = whole body PET/MRI, B = breast PET/MRI).
Authors Total Number of Patients Study Design Patient Position Type of Acquisition Axillary Node Detection Sensitivity Axillary Node Detection Specificity
Kirchner, J., 2018 [26] 38 prospective supine WB, prone B simultaneous 93% 95%
Botsikas, D., 2019 [27] 80 prospective supine WB, prone B sequential 0.85 (0.72–0.93) 0.89 (0.82–0.94)
Melsaether, A.N., 2016 [30] 51 prospective supine simultaneous 88–100% (CI 69, 97) 95% (CI 88, 98)
Taneja, S., 2014 [32] 36 retrospective supine WB, prone B simultaneous 60% on PET, 93.3% on MRI 91% on PET and MRI
Grueneisen, J., 2015 [33] 49 prospective prone simultaneous 78% (CI 52, 94) 90% (CI 74, 98)
Botsikas, D., 2016 [34] 58 retrospective supine WB, prone B sequential 79% 100%

4. Conclusions

The modern battle for the breast surgical oncologist aims to achieve the least invasive but effective treatment and eventually find an imaging tool that is able to predict pathological results and spare women from future axillary surgery.
To date, the current evidence does not permit the avoidance of surgery, but PET/MRI might offer patients a one-stop-shop solution for local and systemic staging, and guide the surgical oncologist to de-escalate axillary surgery in selected patients. Results from prospective trials on PET/MRI are anticipated in the next five years and should help decide the potential applications of this cutting-edge imaging tool in BC treatment.

References

  1. Dihge, L.; Grabau, D.A.; Rasmussen, R.W.; Bendahl, P.O.; Rydén, L. The accuracy of preoperative axillary nodal staging in primary breast cancer by ultrasound is modified by nodal metastatic load and tumor biology. Acta Oncol. 2016, 55, 976–982.
  2. Houssami, N.; Ciatto, S.; Turner, R.M.; Cody, H.S.; Macaskill, P. Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer: Meta-analysis of its accuracy and utility in staging the axilla. Ann. Surg. 2011, 254, 243–251.
  3. van Nijnatten, T.J.A.; Ploumen, E.H.; Schipper, R.J.; Goorts, B.; Andriessen, E.H.; Vanwetswinkel, S.; Schavemaker, M.; Nelemans, P.; de Vries, B.; Beets-Tan, R.G.H.; et al. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients. Eur. J. Radiol. 2016, 85, 2288–2294.
  4. Koolen, B.B.; Vogel, W.V.; Vrancken Peeters, M.J.; Loo, C.E.; Rutgers, E.J.; Valdés Olmos, R.A. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET. J. Oncol. 2012, 2012, 438647.
  5. Heusch, P.; Nensa, F.; Schaarschmidt, B.; Sivanesapillai, R.; Beiderwellen, K.; Gomez, B.; Köhler, J.; Reis, H.; Ruhlmann, V.; Buchbender, C. Diagnostic accuracy of whole-body PET/MRI and whole-body PET/CT for TNM staging in oncology. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 42–48.
  6. Diepstraten, S.C.; Sever, A.R.; Buckens, C.F.; Veldhuis, W.B.; van Dalen, T.; van den Bosch, M.A.; Mali, W.P.; Verkooijen, H.M. Value of preoperative ultrasound-guided axillary lymph node biopsy for preventing completion axillary lymph node dissection in breast cancer: A systematic review and meta-analysis. Ann. Surg. Oncol. 2014, 21, 51–59.
  7. Pilewskie, M.; Jochelson, M.; Gooch, J.C.; Patil, S.; Stempel, M.; Morrow, M. Is Preoperative Axillary Imaging Beneficial in Identifying Clinically Node-Negative Patients Requiring Axillary Lymph Node Dissection? J. Am. Coll. Surg. 2016, 222, 138–145.
  8. Ahmed, M.; Jozsa, F.; Baker, R.; Rubio, I.T.; Benson, J.; Douek, M. Meta-analysis of tumour burden in pre-operative axillary ultrasound positive and negative breast cancer patients. Breast Cancer Res. Treat. 2017, 166, 329–336.
  9. Caudle, A.S.; Kuerer, H.M.; Le-Petross, H.T.; Yang, W.; Yi, M.; Bedrosian, I.; Krishnamurthy, S.; Fornage, B.D.; Hunt, K.K.; Mittendorf, E.A. Predicting the extent of nodal disease in early-stage breast cancer. Ann. Surg. Oncol. 2014, 21, 3440–3447.
  10. Fisher, B.; Jeong, J.H.; Anderson, S.; Bryant, J.; Fisher, E.R.; Wolmark, N. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 2002, 347, 567–575.
  11. Krag, D.N.; Anderson, S.J.; Julian, T.B.; Brown, A.M.; Harlow, S.P.; Costantino, J.P.; Ashikaga, T.; Weaver, D.L.; Mamounas, E.P.; Jalovec, L.M.; et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933.
  12. Donker, M.; van Tienhoven, G.; Straver, M.E.; Meijnen, P.; van de Velde, C.J.; Mansel, R.E.; Cataliotti, L.; Westenberg, A.H.; Klinkenbijl, J.H.; Orzalesi, L.; et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): A randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014, 15, 1303–1310.
  13. Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926.
  14. Galimberti, V.; Cole, B.F.; Zurrida, S.; Viale, G.; Luini, A.; Veronesi, P.; Baratella, P.; Chifu, C.; Sargenti, M.; Intra, M.; et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): A phase 3 randomised controlled trial. Lancet Oncol. 2013, 14, 297–305.
  15. Montagna, G.; Mamtani, A.; Knezevic, A.; Brogi, E.; Barrio, A.V.; Morrow, M. Selecting Node-Positive Patients for Axillary Downstaging with Neoadjuvant Chemotherapy. Ann. Surg. Oncol. 2020, 27, 4515–4522.
  16. Gentilini, O.; Veronesi, U. Abandoning sentinel lymph node biopsy in early breast cancer? A new trial in progress at the European Institute of Oncology of Milan (SOUND: Sentinel node vs Observation after axillary UltraSouND). Breast 2012, 21, 678–681.
  17. Reimer, T.; Hartmann, S.; Stachs, A.; Gerber, B. Local treatment of the axilla in early breast cancer: Concepts from the national surgical adjuvant breast and bowel project B-04 to the planned intergroup sentinel mamma trial. Breast Care 2014, 9, 87–95.
  18. Gentilini, O.; Veronesi, U. Staging the Axilla in Early Breast Cancer: Will Imaging Replace Surgery? JAMA Oncol. 2015, 1, 1031–1032.
  19. Delso, G.; Fürst, S.; Jakoby, B.; Ladebeck, R.; Ganter, C.; Nekolla, S.G.; Schwaiger, M.; Ziegler, S.I. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 2011, 52, 1914–1922.
  20. Ratib, O.; Beyer, T. Whole-body hybrid PET/MRI: Ready for clinical use? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 992–995.
  21. Catalano, O.A.; Rosen, B.R.; Sahani, D.V.; Hahn, P.F.; Guimaraes, A.R.; Vangel, M.G.; Nicolai, E.; Soricelli, A.; Salvatore, M. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: Initial experience in 134 patients—A hypothesis—generating exploratory study. Radiology 2013, 269, 857–869.
  22. Huellner, M.W.; Appenzeller, P.; Kuhn, F.P.; Husmann, L.; Pietsch, C.M.; Burger, I.A.; Porto, M.; Delso, G.; von Schulthess, G.K.; Veit-Haibach, P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: Preliminary observations. Radiology 2014, 273, 859–869.
  23. Drzezga, A.; Souvatzoglou, M.; Eiber, M.; Beer, A.J.; Fürst, S.; Martinez-Möller, A.; Nekolla, S.G.; Ziegler, S.; Ganter, C.; Rummeny, E.J.; et al. First clinical experience with integrated whole-body PET/MR: Comparison to PET/CT in patients with oncologic diagnoses. J. Nucl. Med. 2012, 53, 845–855.
  24. Appenzeller, P.; Mader, C.; Huellner, M.W.; Schmidt, D.; Schmid, D.; Boss, A.; von Schulthess, G.; Veit-Haibach, P. PET/CT versus body coil PET/MRI: How low can you go? Insights Imaging 2013, 4, 481–490.
  25. Wiesmüller, M.; Quick, H.H.; Navalpakkam, B.; Lell, M.M.; Uder, M.; Ritt, P.; Schmidt, D.; Beck, M.; Kuwert, T.; von Gall, C.C. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 12–21.
  26. Kirchner, J.; Grueneisen, J.; Martin, O.; Oehmigen, M.; Quick, H.H.; Bittner, A.K.; Hoffmann, O.; Ingenwerth, M.; Catalano, O.A.; Heusch, P.; et al. Local and whole-body staging in patients with primary breast cancer: A comparison of one-step to two-step staging utilizing. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2328–2337.
  27. Botsikas, D.; Bagetakos, I.; Picarra, M.; Da Cunha Afonso Barisits, A.C.; Boudabbous, S.; Montet, X.; Lam, G.T.; Mainta, I.; Kalovidouri, A.; Becker, M. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur. Radiol. 2019, 29, 1787–1798.
  28. Pace, L.; Nicolai, E.; Luongo, A.; Aiello, M.; Catalano, O.A.; Soricelli, A.; Salvatore, M. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: Lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur. J. Radiol. 2014, 83, 289–296.
  29. Kong, E.J.; Chun, K.A.; Bom, H.S.; Lee, J.; Lee, S.J.; Cho, I.H. Initial experience of integrated PET/MR mammography in patients with invasive ductal carcinoma. Hell. J. Nucl. Med. 2014, 17, 171–176.
  30. Melsaether, A.N.; Raad, R.A.; Pujara, A.C.; Ponzo, F.D.; Pysarenko, K.M.; Jhaveri, K.; Babb, J.S.; Sigmund, E.E.; Kim, S.G.; Moy, L.A. Comparison of Whole-Body (18)F FDG PET/MR Imaging and Whole-Body (18)F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer. Radiology 2016, 281, 193–202.
  31. van Nijnatten, T.J.A.; Goorts, B.; Vöö, S.; de Boer, M.; Kooreman, L.F.S.; Heuts, E.M.; Wildberger, J.E.; Mottaghy, F.M.; Lobbes, M.B.I.; Smidt, M.L. Added value of dedicated axillary hybrid 18F-FDG PET/MRI for improved axillary nodal staging in clinically node-positive breast cancer patients: A feasibility study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 179–186.
  32. Taneja, S.; Jena, A.; Goel, R.; Sarin, R.; Kaul, S. Simultaneous whole-body ¹⁸F-FDG PET-MRI in primary staging of breast cancer: A pilot study. Eur. J. Radiol. 2014, 83, 2231–2239.
  33. Grueneisen, J.; Nagarajah, J.; Buchbender, C.; Hoffmann, O.; Schaarschmidt, B.M.; Poeppel, T.; Forsting, M.; Quick, H.H.; Umutlu, L.; Kinner, S. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging. Invest. Radiol. 2015, 50, 505–513.
  34. Botsikas, D.; Kalovidouri, A.; Becker, M.; Copercini, M.; Djema, D.A.; Bodmer, A.; Monnier, S.; Becker, C.D.; Montet, X.; Delattre, B.M.; et al. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur. Radiol. 2016, 26, 2297–2307.
  35. Catalano, O.A.; Daye, D.; Signore, A.; Iannace, C.; Vangel, M.; Luongo, A.; Catalano, M.; Filomena, M.; Mansi, L.; Soricelli, A.; et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int. J. Oncol. 2017, 51, 281–288.
  36. Goorts, B.; Vöö, S.; van Nijnatten, T.J.A.; Kooreman, L.F.S.; de Boer, M.; Keymeulen, K.B.M.I.; Aarnoutse, R.; Wildberger, J.E.; Mottaghy, F.M.; Lobbes, M.B.I.; et al. Hybrid. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1796–1805.
  37. Kirchner, J.; Martin, O.; Umutlu, L.; Herrmann, K.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; Gauler, T.; Theurer, S.; Antke, C.; et al. Impact of. Eur. J. Radiol. 2020, 128, 108975.
  38. Bruckmann, N.M.; Sawicki, L.M.; Kirchner, J.; Martin, O.; Umutlu, L.; Herrmann, K.; Fendler, W.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; et al. Prospective evaluation of whole-body MRI and. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2816–2825.
  39. Bruckmann, N.M.; Kirchner, J.; Umutlu, L.; Fendler, W.P.; Seifert, R.; Herrmann, K.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; Antke, C.; et al. Prospective comparison of the diagnostic accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur. Radiol. 2021.
  40. Grueneisen, J.; Sawicki, L.M.; Wetter, A.; Kirchner, J.; Kinner, S.; Aktas, B.; Forsting, M.; Ruhlmann, V.; Umutlu, L. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur. J. Radiol. 2017, 89, 14–19.
  41. Sawicki, L.M.; Grueneisen, J.; Schaarschmidt, B.M.; Buchbender, C.; Nagarajah, J.; Umutlu, L.; Antoch, G.; Kinner, S. Evaluation of ¹⁸F-FDG PET/MRI, ¹⁸F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur. J. Radiol. 2016, 85, 459–465.
  42. Pujara, A.C.; Raad, R.A.; Ponzo, F.; Wassong, C.; Babb, J.S.; Moy, L.; Melsaether, A.N. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT. Breast J. 2016, 22, 264–273.
  43. Beiderwellen, K.; Gomez, B.; Buchbender, C.; Hartung, V.; Poeppel, T.D.; Nensa, F.; Kuehl, H.; Bockisch, A.; Lauenstein, T.C. Depiction and characterization of liver lesions in whole body [¹⁸F]-FDG PET/MRI. Eur. J. Radiol. 2013, 82, e669–e675.
  44. Chandarana, H.; Heacock, L.; Rakheja, R.; DeMello, L.R.; Bonavita, J.; Block, T.K.; Geppert, C.; Babb, J.S.; Friedman, K.P. Pulmonary nodules in patients with primary malignancy: Comparison of hybrid PET/MR and PET/CT imaging. Radiology 2013, 268, 874–881.
  45. Rauscher, I.; Eiber, M.; Fürst, S.; Souvatzoglou, M.; Nekolla, S.G.; Ziegler, S.I.; Rummeny, E.J.; Schwaiger, M.; Beer, A.J. PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. J. Nucl. Med. 2014, 55, 724–729.
  46. Catalano, O.A.; Nicolai, E.; Rosen, B.R.; Luongo, A.; Catalano, M.; Iannace, C.; Guimaraes, A.; Vangel, M.G.; Mahmood, U.; Soricelli, A.; et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br. J. Cancer 2015, 112, 1452–1460.
  47. Raad, R.A.; Friedman, K.P.; Heacock, L.; Ponzo, F.; Melsaether, A.; Chandarana, H. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J. Magn. Reson. Imaging 2016, 43, 504–511.
  48. Ishii, S.; Shimao, D.; Hara, T.; Miyajima, M.; Kikuchi, K.; Takawa, M.; Kumamoto, K.; Ito, H.; Shishido, F. Comparison of integrated whole-body PET/MR and PET/CT: Is PET/MR alternative to PET/CT in routine clinical oncology? Ann. Nucl. Med. 2016, 30, 225–233.
  49. Kirchner, J.; Sawicki, L.M.; Deuschl, C.; Grüneisen, J.; Beiderwellen, K.; Lauenstein, T.C.; Herrmann, K.; Forsting, M.; Heusch, P.; Umutlu, L. 18 F-FDG PET/MR imaging in patients with suspected liver lesions: Value of liver-specific contrast agent Gadobenate dimeglumine. PLoS ONE 2017, 12, e0180349.
  50. Sonni, I.; Minamimoto, R.; Baratto, L.; Gambhir, S.S.; Loening, A.M.; Vasanawala, S.S.; Iagaru, A. Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na [18 F] F and [18 F] FDG: A Focus on Skeletal Lesions. Mol. Imaging Biol. 2019, 22, 397–406.
  51. Schiano, C.; Franzese, M.; Pane, K.; Garbino, N.; Soricelli, A.; Salvatore, M.; de Nigris, F.; Napoli, C. Hybrid. Cancers 2019, 11, 1444.
  52. Margolis, N.E.; Moy, L.; Sigmund, E.E.; Freed, M.; McKellop, J.; Melsaether, A.N.; Kim, S.G. Assessment of Aggressiveness of Breast Cancer Using Simultaneous 18F-FDG-PET and DCE-MRI: Preliminary Observation. Clin. Nucl. Med. 2016, 41, e355–e361.
  53. Catalano, O.A.; Horn, G.L.; Signore, A.; Iannace, C.; Lepore, M.; Vangel, M.; Luongo, A.; Catalano, M.; Lehman, C.; Salvatore, M.; et al. PET/MR in invasive ductal breast cancer: Correlation between imaging markers and histological phenotype. Br. J. Cancer 2017, 116, 893–902.
  54. Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Sarin, R.; Das, P.K.; Singhal, M. Reliability of 18 F-FDG PET Metabolic Parameters Derived Using Simultaneous PET/MRI and Correlation With Prognostic Factors of Invasive Ductal Carcinoma: A Feasibility Study. AJR Am. J. Roentgenol. 2017, 209, 662–670.
  55. Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Mehta, S.B.; Sarin, R. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study. Eur. J. Radiol. 2017, 86, 261–266.
  56. Kong, E.; Chun, K.A.; Bae, Y.K.; Cho, I.H. Integrated PET/MR mammography for quantitative analysis and correlation to prognostic factors of invasive ductal carcinoma. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 118–126.
  57. Incoronato, M.; Grimaldi, A.M.; Cavaliere, C.; Inglese, M.; Mirabelli, P.; Monti, S.; Ferbo, U.; Nicolai, E.; Soricelli, A.; Catalano, O.A.; et al. Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: A PET/MRI study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1680–1693.
  58. Inglese, M.; Cavaliere, C.; Monti, S.; Forte, E.; Incoronato, M.; Nicolai, E.; Salvatore, M.; Aiello, M. A multi-parametric PET/MRI study of breast cancer: Evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR Biomed. 2019, 32, e4026.
  59. Incoronato, M.; Grimaldi, A.M.; Mirabelli, P.; Cavaliere, C.; Parente, C.A.; Franzese, M.; Staibano, S.; Ilardi, G.; Russo, D.; Soricelli, A.; et al. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers 2019, 11, 876.
  60. Morawitz, J.; Kirchner, J.; Martin, O.; Bruckmann, N.M.; Dietzel, F.; Li, Y.; Rischpler, C.; Herrmann, K.; Umutlu, L.; Bittner, A.K.; et al. Prospective Correlation of Prognostic Immunohistochemical Markers With SUV and ADC Derived From Dedicated Hybrid Breast 18F-FDG PET/MRI in Women With Newly Diagnosed Breast Cancer. Clin. Nucl. Med. 2021, 46, 201–205.
  61. Murakami, W.; Tozaki, M.; Sasaki, M.; Hida, A.I.; Ohi, Y.; Kubota, K.; Sagara, Y. Correlation between. Eur. J. Radiol. 2020, 123, 108773.
  62. Carmona-Bozo, J.C.; Manavaki, R.; Woitek, R.; Torheim, T.; Baxter, G.C.; Caracò, C.; Provenzano, E.; Graves, M.J.; Fryer, T.D.; Patterson, A.J.; et al. Hypoxia and perfusion in breast cancer: Simultaneous assessment using PET/MR imaging. Eur. Radiol. 2021, 31, 333–344.
  63. Jena, A.; Taneja, S.; Singh, A.; Negi, P.; Mehta, S.B.; Ahuja, A.; Singhal, M.; Sarin, R. Association of pharmacokinetic and metabolic parameters derived using simultaneous PET/MRI: Initial findings and impact on response evaluation in breast cancer. Eur. J. Radiol. 2017, 92, 30–36.
  64. Wang, J.; Shih, T.T.; Yen, R.F. Multiparametric Evaluation of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer Using Integrated PET/MR. Clin. Nucl. Med. 2017, 42, 506–513.
  65. Romeo, V.; D’Aiuto, M.; Frasci, G.; Imbriaco, M.; Nicolai, E. Simultaneous PET/MRI assessment of response to cytotoxic and hormone neo-adjuvant chemotherapy in breast cancer: A preliminary report. Med. Oncol. 2017, 34, 18.
  66. Cho, N.; Im, S.A.; Cheon, G.J.; Park, I.A.; Lee, K.H.; Kim, T.Y.; Kim, Y.S.; Kwon, B.R.; Lee, J.M.; Suh, H.Y.; et al. Integrated. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 328–339.
  67. Andreassen, M.M.S.; Goa, P.E.; Sjøbakk, T.E.; Hedayati, R.; Eikesdal, H.P.; Deng, C.; Østlie, A.; Lundgren, S.; Bathen, T.F.; Jerome, N.P. Semi-automatic segmentation from intrinsically-registered 18F-FDG-PET/MRI for treatment response assessment in a breast cancer cohort: Comparison to manual DCE-MRI. MAGMA 2020, 33, 317–328.
  68. Martinez-Möller, A.; Eiber, M.; Nekolla, S.G.; Souvatzoglou, M.; Drzezga, A.; Ziegler, S.; Rummeny, E.J.; Schwaiger, M.; Beer, A.J. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J. Nucl. Med. 2012, 53, 1415–1426.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 388
Revisions: 2 times (View History)
Update Date: 03 Sep 2021
1000/1000