Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1392 word(s) 1392 2021-06-01 10:16:01 |
2 Format correct Meta information modification 1392 2021-07-26 07:55:20 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Zhang, J. Organic Photodetectors. Encyclopedia. Available online: https://encyclopedia.pub/entry/12411 (accessed on 29 March 2024).
Zhang J. Organic Photodetectors. Encyclopedia. Available at: https://encyclopedia.pub/entry/12411. Accessed March 29, 2024.
Zhang, Jianhua. "Organic Photodetectors" Encyclopedia, https://encyclopedia.pub/entry/12411 (accessed March 29, 2024).
Zhang, J. (2021, July 26). Organic Photodetectors. In Encyclopedia. https://encyclopedia.pub/entry/12411
Zhang, Jianhua. "Organic Photodetectors." Encyclopedia. Web. 26 July, 2021.
Organic Photodetectors
Edit

Organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors on lightweight flexible substrates. Carrier blocking layers engineering is very important to the high performance of OPDs that can select a certain charge carriers (holes or electrons) to be collected and suppress another carrier. Carrier blocking layers of OPDs play a critical role in reducing dark current, boosting their efficiency and long-time stability.

organic photodetector carrier blocking layer energy alignment dark current efficiency

1. Introduction

Photodetectors can convert optical signals to electronic signals, which are widely applied in optical communication, environmental monitoring, cameras, smart phones, image sensing, and so on [1][2][3][4][5]. Compared to commercial photodetectors such as silicon (Si)- and indium gallium arsenide (InGaAs)-based photodetectors, OPDs are increasingly attractive for light sensing applications as they combine detection wavelength tenability, solution processability, and high photogeneration yield with low fabrication costs, lightweight, and flexibility [6][7]. The basic structure of OPDs generally includes two essentials parts: an active layer for light absorption and electrodes for the collection of charge carriers (electrons and holes). The working mechanism of OPDs is similar to that of organic photovoltaics (OPVs), which can be summarized as (i) the organic semiconductors absorb photons to generate excitons (electron−hole pair) and then the excitons diffuse to donor/acceptor interfaces; (ii) the excitons separate into electrons and holes driven by electric field force formed by extra applied bias; (iii) holes are transferred to the anode through the channels formed by the highest occupied molecular orbital (HOMO) of the donor, and electrons are transported to the cathode via the channels formed by the lowest unoccupied molecular orbital (LUMO) of the acceptor; (iv) the holes and electrons are collected by the corresponding electrode to generate photocurrent.
Continuously improving the high gain property, OPDs have achieved significant breakthroughs and rapid evolution in the last several decades, thanks to the developments of novel donor/acceptor materials, the innovations of the device structure, and interface engineering. Kang et al., reported high-detectivity green-selective all-polymer p-n junction photodetectors by engineering the π-conjugation networks and insulating properties of p- and n-type polymers [8]. Zhang et al., achieved planar heterojunction (PHJ) OPDs based on the medium-band gap fullerene C60 and a new low-band gap fused-ring non-fullerene acceptor bilayer structure for a tunable spectral response [9]. Nie reported that aligned nanofibers (ANs) prepared by electrostatic spinning technology as an interfacial layer can significantly enhance the performance of inverted OPDs [10]. Due to the lower relative permittivity (εr ≈ 3–4) of organic in comparison with inorganic materials [11], excitons with a relatively high binding energy of ≈ 0.35–0.5 eV are generated after light absorption, rather than free electrons and holes. Thus, the active layer of OPDs is often based on a bulk heterojunction (BHJ) architecture that comprises finely bicontinuous and interpenetrative networks of electron donor and acceptor phases, in which this structure facilitates exciton dissociation and charge transport to the relevant electrodes [12].

2. Carrier Blocking Layer Materials and Application in Organic Photodetectors

Different types of blocking layer materials have been demonstrated to play a critical role in OPDs. At present, the interface layer materials in organic solar cells and OPDs have great similarities. However, due to the different working mechanisms of devices, not all materials can be used in OPDs. Therefore, more research and optimization of these materials should be carried out for OPDs. From Table 1 and Table 2, we can ascertain the development of OPDs in hole and electron blocking layer materials in recent years, respectively. However, more efforts are needed to promote their applications and to propose new materials for OPDs.
Table 1. Survey of the main characteristics of OPD employing materials such as HBLs.
Materials Device Structure Jd (A cm−2) EQE (%) D* (Jones) R (A W−1) Measurement Conditions Ref
BCP ITO/PEDOT:PSS/active layer/BCP/Al 1.1 × 10−9 - 1.4 × 1012 0.068 −2 V, @ 800 nm [13]
ITO/TPBi/MoO3/C70/active layer/BCP/Al 2.2 × 10−2 68,927 1 2.2 × 1012 188 −6 V, @ 345 nm [14]
ITO/PEDOT:PSS/active layer/BCP/Al 1.3 × 10−5 2170 8.3 × 1011 6.39 −15 V, @ 360 nm [15]
Bphen ITO/TAPC:MoO3/active layer/Bphen/Ag 1.11 × 10−9 41.8 6.43 × 1012 0.121 −3 V, @ 360 nm [16]
ITO/PEDOT:PSS/active layer/BCP/Ag 4.82 × 10−4 - 3.7 × 1011 - −1.5 V, @ 350 nm, 0.5 mW cm−2 [17]
ITO/MoO3/CuI/active layer/Bphen/Al ~10−2 400 1012 - −8 V, @ 870 nm [18]
ITO/PEDOT:PSS/active layer/BCP/Ag ~10−5 43.78 2.67 × 1012 0.25 @ 710 nm [19]
ITO/TAPC/active layer/BCP/Ag 1.15 × 10−9 74.6 4.14 × 1013 0.439 −2 V, @ 730 nm [20]
PEIE ITO/PEIE/active layer/MoO3/Ag 7.7 × 10−9 60 4.8 × 1012 0.24 −1.5 V, @ 546 nm [21]
ITO/PEIE/active layer/Al 4 × 10−5 12,000 2.27 × 1012 54 −0.8 V, @ 530 nm [22]
ITO/PEIE/active layer/Au 7.7 × 10−10 - 2.2 × 1013 0.32 −2 V, @ 629 nm [23]
ITO/PEIE/active layer/Al 2.77 × 10−6 3200 1.04 × 1012 14.25 −1 V, @ 550 nm [24]
PEDOT:PSS/PEIE/active layer/PEDOT:PSS 1.5 × 10−10 55 3.45 × 1013 - −5 V, @ 530 nm [25]
PFN ITO/PFN/active layer/Ag 5.10 × 10−4 67.09 2.47 × 1012 0.37 −0.5 V, @ 680 nm [26]
ITO/PFN/active layer/Al ~10−3 650 1.76 × 1012 8.7 −15 V, @ 520 nm [27]
ITO/PFN/active layer/Al 1.92 × 10−8 208.11 9.1 × 1012 0.921 −0.5 V, @ 550 nm [28]
ITO/PEDOT:PSS/active layer/PFN-Br/Ag ~10−8 65 1013 - −10 V, @ 860 nm [29]
ITO/PEDOT:PSS/active layer/PFN-Br/Al 4.85 × 10−10 56 2.61 × 1013 0.33 −0.1 V, 720 nm [6]
PEI PEDOT:PSS/PEI/active layer/PEDOT:PSS/PEDOT:PSS ~10−7 65 - - −4 V [30]
PEDOT:PSS/PEI/active layer/Poly-PT/PEDOT:PSS ~10−7 65 2.2 × 1012 - −1 V, @ 505 nm [31]
PEDOT:PSS/PEI/active layer/PEDOT:PSS 5.7 × 10−8 46 3.35 × 1012 - −1 V, @ 525 nm [32]
C60 ITO/PEDOT:PSS/active layer/C60/Al 8 × 10−10 60 ~1013 - −1 V, @ 532 nm [33]
ITO/PEDOT:PSS/active layer/C60/Al 1.1 × 10−10 67.1 9.2 × 1012 0.38 −1 V, @ 700 nm [34]
ITO/ZnO/active layer/MoO3/Ag 6.51 × 10−8 ~70 2.58 × 1011 0.48 −0.1 V, @ 700 nm [35]
Ag/ZnO/active layer/PEDOT:PSS ~10−10 - 2 × 1012 0.3 −1 V, @ 532 nm [36]
ITO/ZnO/active layer/MoO3/Al 3.9 × 10−9 140,000 6.3 × 1012 - −0.5 V, @ 680 nm [37]
ITO/ZnO/PEIE/active layer/MoO3/Ag 8.075 × 10−6 62 3.749 × 1012 0.281 2 V, @ 680 nm [38]
PEDOT:PSS/ZnO/PEIE/active layer/PEDOT:PSS 2.11 × 10−8 ~40 ~1011 ~0.17 0 V, @ 700 nm [39]
TiO2 ITO/TiO2/active layer/MoO3/Ag ~10−7 - ~1012 0.022 0 V, @ 350 nm [40]
ITO/TiO2/active layer/Al 1.09 × 10−7 113 1.9 × 1012 0.5 −1 V, @ 550 nm [41]
ITO/TiO2/active layer/MoO3/Al ~10−9 94.22 2.93 × 1013 - 0 V, @ 690 nm [10]
SnO2 ITO/SnO2/active layer/Al 2.89 × 10−4 1430 2.29 × 1013 6.97 −1 V, @ 625 nm [42]
ITO/SnO2/active layer/MoO3/Ag ~10−9 ~70 5.82 × 1012 - −1 V, @ 900 nm [43]
Cs2CO3 ITO/PEDOT:PSS/active layer/Cs2CO3/Al 2.1 × 10−8 >100 3 × 1012 - −3 V, @ 450 nm [44]
LiF ITO/PEDOT:PSS/active layer/LiF/Al 1.7 × 10−8 - - 0.004 −3 V, @ solar simulator [45]
ITO/PEDOT:PSS/active layer/LiF/Al 2.7 × 10−7 (−1 V) 5600 - 15.9 −40 V, @ 360 nm [46]
1 Graphene oxide functionalized with cysteine.
Table 2. Survey of the main characteristics of OPD-employing materials such as EBLs.
Materials Device Structure Jd (A cm−2) EQE (%) D* (Jones) R (A W−1) Measurement Conditions Ref
TFB ITO/TFB/active layer/Al 2 × 10−8 35 3.34 × 1012 - −5 V, @ 900 nm [47]
PEDOT:PSS/TFB/active layer/F8TBT/Al 4 × 10−9 20 - - −0.5 V, @ 650 nm [48]
ITO/PEDOT:PSS/TFB/active layer/Al 8 × 10−9 9 - - −0.5 V, @ 530 nm [49]
ITO/TFB/active layer/Al 3.4 × 10−11 82 2.19 × 1013 0.44 −5 V, @ 660 nm [50]
TIPS pentacene ITO/TIPS pentacene/active layer/Al 1 × 10−9 52 1.44 × 1013 - −5 V, @ 610 nm [51]
ITO/TIPS pentacene/active layer/Al 9 × 10−10 80 1.63 × 1013 - −5 V, @ 530 nm [52]
PEDOT:PSS ITO/PEDOT:PSS/active layer/Al ~10−3 ~250 ~6 × 1011 0.93 −10 V, @ 400 nm [53]
ITO/PEDOT:PSS/active layer/Al 2.68 × 10−6 3.92 × 105 1.4 × 1011 46.1 −25 V, @ 510 nm [54]
ITO/PEDOT:PSS/active layer/Al ~10−7 2000 ~1011 ~0.4 −50 V, @ 510 nm [55]
ITO/PEDOT:PSS+ GO–Cys 1/active layer/Al ~10−10 - 5.7 × 1012 ~0.15 −0.1 V, @ 620 nm [56]
P3HT ITO/PEIE/active layer/P3HT/MoO3/Al ~1.5 × 10−9 - 4.15 × 1012 0.19 −0.1 V, @ 525 nm [57]
ITO/ZnO/active layer/P3HT/MoO3/Al 1.1 × 10−8 70 3.0 × 1012 0.34 −3 V, @ 630 nm [58]
ITO/ZnO/active layer/P3HT/Ag 9 × 10−5 - 6.59 × 1010 0.214 −2 V, @ 630 nm [59]
NiOx ITO/NiOx/active layer/Yb/Ag ~10−8 53.39 2.15 × 1012 0.253 −1 V, @ 525 nm [60]
ITO/NiOx/active layer/ZnO/Ag 3.4 × 10−8 ~52 1.2 × 1012 0.25 −1 V, @ 600 nm [61]
ITO/ZnO:Al/active layer/NiOx/Ag 1.13 × 10−7 - 3.86 × 1012 0.74 −5 V, @ 525 nm [62]
ITO/ZnO:Al/active layer/NiOx/Ag 8.09 × 10−8 81.93 2.15 × 1012 0.35 −5 V, @ 525 nm [63]
MoO3 ITO/ZnO/active layer/MoO3/Ag 5.9 × 10−9 - 3.04 × 1012 - −3 V, @ 650 nm [64]
Al/ZnO/active layer/MoO3/Ag/MoO3 2.95 × 10−7 31 4.49 × 1011 0.14 −1.5 V, @ 650 nm [65]
Al/PCBM/active layer/MoO3/Ag/MoO3 1 × 10−9 30 6 × 1012 - −1 V, @ 500 nm [66]
V2O5 ITO/PEDOT:PSS + V2O5/active layer/V2O5/Al 5.53 × 10−3 - - - −1 V, @ (AM 1.5 G) solar simulator [67]
CuSCN ITO/CuSCN/active layer/LiF/Al 2.7 × 10−10 57.2 4.4 × 1013 0.4 −0.1 V, @ 870 nm [68]
ITO/CuSCN/active layer/BCP/Mg:Ag 1 × 10−8 - - - −1 V [69]
(1) Organic interface materials in OPDs are expected to be used in future flexible wearable electronic devices, and further research is needed. However, it is necessary to develop new strategies to solve the problem that they are orthogonal to the solvent of the organic active layer according to the device structure.
(2) Inorganic materials have also been studied extensively in OPDs because of their high stability. However, the particle size of the material needs to be further reduced, and there are still relatively few p-type inorganic nanomaterials for EBLs. How to achieve the preparation of high-quality inorganic blocking layers at low temperature or even room temperature is the focus of our attention.
(3) Doping is one of the straightforward ways to modify the carrier blocking layer. The method of inorganic nanoparticle doping in organic interface materials is expected to be used in the future research of OPD because it combines the advantages of the two types of materials.

References

  1. Shi, L.; Liang, Q.; Wang, W.; Zhang, Y.; Li, G.; Ji, T.; Hao, Y.; Cui, Y. Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials 2018, 8, 713.
  2. Lan, Z.; Lei, Y.; Chan, W.K.E.; Chen, S.; Luo, D.; Zhu, F. Near-infrared and visible light dual-mode organic photodetectors. Sci. Adv. 2020, 6, eaaw8065.
  3. Tam, H.; Choi, W.; Zhu, F. Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices. Electronics 2015, 4, 623–632.
  4. Liu, J.; Wang, Y.; Wen, H.; Bao, Q.; Shen, L.; Ding, L. Organic Photodetectors: Materials, Structures, and Challenges. Solar RRL 2020, 4, 2000139.
  5. Ross, D.; Jansen-van Vuuren, A.A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Adv. Mater. 2016, 28, 4766–4802.
  6. Zhong, Z.; Li, K.; Zhang, J.; Ying, L.; Xie, R.; Yu, G.; Huang, F.; Cao, Y. High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Appl. Mater. Interfaces 2019, 11, 14208–14214.
  7. Oliveira, J.; Brito-Pereira, R.; Gonçalves, B.F.; Etxebarria, I.; Lanceros-Mendez, S. Recent developments on printed photodetectors for large area and flexible applications. Org. Electron. 2019, 66, 216–226.
  8. Kang, J.; Kim, J.; Ham, H.; Ahn, H.; Lim, S.Y.; Kim, H.M.; Kang, I.N.; Jung, I.H. High-Detectivity Green-Selective All-Polymer p–n Junction Photodetectors. Adv. Opt. Mater. 2020, 8, 2001038.
  9. Zhang, B.; Li, Y.; Ma, Y.; Xia, R.; Li, X.; Wan, F.; Shen, L.; Yip, H.L.; Yuan, Y.; Jiang, Z.Q.; et al. Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor Bilayers for a Tunable Spectral Response. ACS Appl Mater. Interfaces 2020, 12, 55064–55071.
  10. Nie, R.; Wang, Y.; Deng, X. Aligned nanofibers as an interfacial layer for achieving high-detectivity and fast-response organic photodetectors. ACS Appl. Mater. Interfaces 2014, 6, 7032–7037.
  11. Brebels, J.; Manca, J.V.; Lutsen, L.; Vanderzande, D.; Maes, W. High dielectric constant conjugated materials for organic photovoltaics. J. Mater. Chem. A 2017, 5, 24037–24050.
  12. Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 2020, e2001763.
  13. Qi, J.; Zhou, X.; Yang, D.; Qiao, W.; Ma, D.; Wang, Z.Y. Optimization of Solubility, Film Morphology and Photodetector Performance by Molecular Side-Chain Engineering of Low-Bandgap Thienothiadiazole-Based Polymers. Adv. Funct. Mater. 2014, 24, 7605–7612.
  14. Guo, D.; Yang, D.; Zhao, J.; Vadim, A.; Ma, D. Role of interfaces in controlling charge accumulation and injection in the photodetection performance of photomultiplication-type organic photodetectors. J. Mater. Chem. C 2020, 8, 9024–9031.
  15. Zhang, X.; Zheng, E.; Esopi, M.R.; Cai, C.; Yu, Q. Flexible Narrowband Ultraviolet Photodetectors with Photomultiplication Based on Wide Band Gap Conjugated Polymer and Inorganic Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 24064–24074.
  16. Lee, C.-C.; Biring, S.; Ren, S.-J.; Li, Y.-Z.; Li, M.-Z.; Al Amin, N.R.; Liu, S.-W. Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Org. Electron. 2018, 65, 150–155.
  17. Wang, X.; Wang, J.; Zhao, H.; Jin, H.; Yu, J. Detectivity enhancement of double-layer organic photodetectors consisting of solution-processed interconnecting layers. Mater. Lett. 2019, 243, 81–83.
  18. Wu, L.; Xu, R.; Yao, G.; Su, D.; Su, Z.; Yang, H. Photomultiplication type near-infrared organic photodetectors with a mixed active layer. Microw. Opt. Technol. Lett. 2020, 63, 714–718.
  19. Yang, G.; Wang, Z.; Duan, Y.; Zhao, D.; Yu, J. High-Performance Organic Photodetectors by Introducing a Non-Fullerene Acceptor to Broaden Long Wavelength Detective Spectrum. Nanoscale Res. Lett. 2019, 14, 201.
  20. Lee, C.C.; Estrada, R.; Li, Y.Z.; Biring, S.; Amin, N.R.A.; Li, M.Z.; Liu, S.W.; Wong, K.T. Vacuum-Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Near-Infrared Wavelength. Adv. Opt. Mater. 2020, 8, 2000519.
  21. Kim, H.; Song, B.; Lee, K.; Forrest, S.; Kanicki, J. Bilayer Interdiffused Heterojunction Organic Photodiodes Fabricated by Double Transfer Stamping. Adv. Opt. Mater. 2017, 5, 1600784.
  22. Wang, Y.; Zhu, L.; Wang, T.; Hu, Y.; Deng, Z.; Cui, Q.; Lou, Z.; Hou, Y.; Teng, F. Fast and sensitive polymer photodetectors with extra high external quantum efficiency and large linear dynamic range at low working voltage bias. Org. Electron. 2018, 62, 448–453.
  23. Klab, T.; Luszczynska, B.; Ulanski, J.; Wei, Q.; Chen, G.; Zou, Y. Influence of PEIE interlayer on detectivity of red-light sensitive organic non-fullerene photodetectors with reverse structure. Org. Electron. 2020, 77, 105527.
  24. Wang, Y.; Zhu, L.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode. Opt. Express 2017, 25, 7719–7729.
  25. Pierre, A.; Deckman, I.; Lechene, P.B.; Arias, A.C. High Detectivity All-Printed Organic Photodiodes. Adv. Mater. 2015, 27, 6411–6417.
  26. Wang, T.; Wang, Y.; Zhu, L.; Lv, L.; Hu, Y.; Deng, Z.; Cui, Q.; Lou, Z.; Hou, Y.; Teng, F. Work-function-controlled operation mode transition between photodiode and photoconductor modes in organic photodetectors. Org. Electron. 2019, 64, 138–145.
  27. Miao, J.; Zhang, F.; Lin, Y.; Wang, W.; Gao, M.; Li, L.; Zhang, J.; Zhan, X. Highly Sensitive Organic Photodetectors with Tunable Spectral Response under Bi-Directional Bias. Adv. Opt. Mater. 2016, 4, 1711–1717.
  28. Wang, T.; Hu, Y.; Deng, Z.; Wang, Y.; Lv, L.; Zhu, L.; Lou, Z.; Hou, Y.; Teng, F. High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer. RSC Adv. 2017, 7, 1743–1748.
  29. Xie, B.; Xie, R.; Zhang, K.; Yin, Q.; Hu, Z.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871.
  30. Falco, A.; Zaidi, A.M.; Lugli, P.; Abdellah, A. Spray deposition of Polyethylenimine thin films for the fabrication of fully-sprayed organic photodiodes. Org. Electron. 2015, 23, 186–192.
  31. Grimoldi, A.; Colella, L.; La Monaca, L.; Azzellino, G.; Caironi, M.; Bertarelli, C.; Natali, D.; Sampietro, M. Inkjet printed polymeric electron blocking and surface energy modifying layer for low dark current organic photodetectors. Org. Electron. 2016, 36, 29–34.
  32. Cesarini, M.; Brigante, B.; Caironi, M.; Natali, D. Reproducible, High Performance Fully Printed Photodiodes on Flexible Substrates through the Use of a Polyethylenimine Interlayer. ACS Appl. Mater. Interfaces 2018, 10, 32380–32386.
  33. Armin, A.; Hambsch, M.; Kim, I.K.; Burn, P.L.; Meredith, P.; Namdas, E.B. Thick junction broadband organic photodiodes. Laser Photon. Rev. 2014, 8, 924–932.
  34. Kim, I.K.; Pal, B.N.; Ullah, M.; Burn, P.L.; Lo, S.-C.; Meredith, P.; Namdas, E.B. High-Performance, Solution-Processed Non-polymeric Organic Photodiodes. Adv. Opt. Mater. 2015, 3, 50–56.
  35. Liu, J.; Wen, H.; Shen, L. Highly sensitive, broadband, fast response organic photodetectors based on semi-tandem structure. Nanotechnology 2020, 31, 214001.
  36. Eckstein, R.; Strobel, N.; Rödlmeier, T.; Glaser, K.; Lemmer, U.; Hernandez-Sosa, G. Fully Digitally Printed Image Sensor Based on Organic Photodiodes. Adv. Opt. Mater. 2018, 6, 1701108.
  37. Zhou, X.; Yang, D.; Ma, D.; Vadim, A.; Ahamad, T.; Alshehri, S.M. Ultrahigh Gain Polymer Photodetectors with Spectral Response from UV to Near-Infrared Using ZnO Nanoparticles as Anode Interfacial Layer. Adv. Funct. Mater. 2016, 26, 6619–6626.
  38. Opoku, H.; Choy, J.-Y.; Kumar, K.A.; Kim, H.-S.; Shrestha, N.K.; Mane, S.D.; Bathula, C. Benzo[1, 2-b: 4, 5-b′]dithiophene-based copolymers as panchromatic light sensors in organic photodiodes application. J. Mater. Res. Technol. 2020, 9, 15632–15637.
  39. Xia, Y.; Aguirre, L.E.; Xu, X.; Inganäs, O. All-Polymer High-Performance Photodetector through Lamination. Adv. Electron. Mater. 2020, 6, 1901017.
  40. Zhu, H.L.; Choy, W.C.H.; Sha, W.E.I.; Ren, X. Photovoltaic Mode Ultraviolet Organic Photodetectors with High On/Off Ratio and Fast Response. Adv. Opt. Mater. 2014, 2, 1082–1089.
  41. Wang, Y.; Zhu, L.; Wang, T.; Hu, Y.; Deng, Z.; Cui, Q.; Lou, Z.; Hou, Y.; Teng, F. Sensitive, fast, stable, and broadband polymer photodetector with introducing TiO2 nanocrystal trap states. Org. Electron. 2018, 59, 63–68.
  42. Deng, R.; Yan, C.; Deng, Y.; Hu, Y.; Deng, Z.; Cui, Q.; Lou, Z.; Hou, Y.; Teng, F. High-Performance Polymer Photodetector Using the Non-Thermal-and-Non-Ultraviolet–Ozone-Treated SnO2 Interfacial Layer. Phys. Status Solidi RRL Rapid Res. Lett. 2019, 14, 1900531.
  43. Huang, J.; Lee, J.; Nakayama, H.; Schrock, M.; Cao, D.X.; Cho, K.; Bazan, G.C.; Nguyen, T.Q. Understanding and Countering Illumination-Sensitive Dark Current: Toward Organic Photodetectors with Reliable High Detectivity. ACS Nano 2021, 15, 1753–1763.
  44. Guo, H.; Wang, Y.; Wang, R.; Liu, S.; Huang, K.; Michinobu, T.; Dong, G. Poly(dithiazolfluorene-alt-selenadiazolobenzotriazole)-Based Blue-Light Photodetector and Its Application in Visible-Light Communication. ACS Appl. Mater. Interfaces 2019, 11, 16758–16764.
  45. Zafar, Q.; Ahmad, Z.; Sulaiman, K. PFO-DBT:MEH-PPV:PC(7)(1)BM ternary blend assisted platform as a photodetector. Sensors 2015, 15, 965–978.
  46. Esopi, M.R.; Calcagno, M.; Yu, Q. Organic Ultraviolet Photodetectors Exhibiting Photomultiplication, Low Dark Current, and High Stability. Adv. Mater. Technol. 2017, 2, 1700025.
  47. Montenegro Benavides, C.; Rechberger, S.; Spiecker, E.; Berlinghof, M.; Unruh, T.; Biele, M.; Schmidt, O.; Brabec, C.J.; Tedde, S.F. Improving spray coated organic photodetectors performance by using 1,8-diiodooctane as processing additive. Org. Electron. 2018, 54, 21–26.
  48. Keivanidis, P.E.; Khong, S.-H.; Ho, P.K.H.; Greenham, N.C.; Friend, R.H. All-solution based device engineering of multilayer polymeric photodiodes: Minimizing dark current. Appl. Phys. Lett. 2009, 94, 173303.
  49. Keivanidis, P.E.; Ho, P.K.H.; Friend, R.H.; Greenham, N.C. The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors. Adv. Funct. Mater. 2010, 20, 3895–3903.
  50. Biele, M.; Montenegro Benavides, C.; Hürdler, J.; Tedde, S.F.; Brabec, C.J.; Schmidt, O. Spray-Coated Organic Photodetectors and Image Sensors with Silicon-Like Performance. Adv. Mater. Technol. 2019, 4, 1800158.
  51. Benavides, C.M.; Murto, P.; Chochos, C.L.; Gregoriou, V.G.; Avgeropoulos, A.; Xu, X.; Bini, K.; Sharma, A.; Andersson, M.R.; Schmidt, O.; et al. High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based pi-Conjugated Donor-Acceptor Polymer. ACS Appl. Mater. Interfaces 2018, 10, 12937–12946.
  52. Montenegro Benavides, C.; Biele, M.; Schmidt, O.; Brabec, C.J.; Tedde, S.F. TIPS Pentacene as a Beneficial Interlayer for Organic Photodetectors in Imaging Applications. IEEE Trans. Electron. Devices 2018, 65, 1516–1522.
  53. Liu, M.; Miao, J.; Wang, J.; Zhao, Z.; Yang, K.; Zhang, X.; Peng, H.; Zhang, F. Broadband organic photodetectors exhibiting photomultiplication with a narrow bandgap non-fullerene acceptor as an electron trap. J. Mater. Chem. C 2020, 8, 9854–9860.
  54. Wang, J.; Chen, S.-C.; Yin, Z.; Zheng, Q. Broadband organic photodetectors based on ternary blend active layers with enhanced and spectrally flat response. J. Mater. Chem. C 2020, 8, 14049–14055.
  55. Wang, W.; Du, M.; Zhang, M.; Miao, J.; Fang, Y.; Zhang, F. Organic Photodetectors with Gain and Broadband/Narrowband Response under Top/Bottom Illumination Conditions. Adv. Opt. Mater. 2018, 6, 1800249.
  56. Hu, Z.; Li, C.; Nie, R.; Li, Y.-Q.; Tang, J.-X.; Deng, X. Biomaterial functionalized graphene oxides with tunable work function for high sensitive organic photodetectors. RSC Adv. 2015, 5, 99431–99438.
  57. Xiong, S.; Li, L.; Qin, F.; Mao, L.; Luo, B.; Jiang, Y.; Li, Z.; Huang, J.; Zhou, Y. Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 9176–9183.
  58. Xu, X.; Zhou, X.; Zhou, K.; Xia, Y.; Ma, W.; Inganäs, O. Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors. Adv. Funct. Mater. 2018, 28, 1805570.
  59. Seiberlich, M.; Strobel, N.; Ruiz-Preciado, L.A.; Ruscello, M.; Lemmer, U.; Hernandez-Sosa, G. Aerosol-Jet-Printed Donor-Blocking Layer for Organic Photodiodes. Adv. Electron. Mater. 2020, 7, 2000811.
  60. Lim, S.B.; Ji, C.H.; Oh, I.S.; Oh, S.Y. Reduced leakage current and improved performance of an organic photodetector using an ytterbium cathode interlayer. J. Mater. Chem. C 2016, 4, 4920–4926.
  61. Manders, J.R.; Lai, T.-H.; An, Y.; Xu, W.; Lee, J.; Kim, D.Y.; Bosman, G.; So, F. Low-Noise Multispectral Photodetectors Made from All Solution-Processed Inorganic Semiconductors. Adv. Funct. Mater. 2014.
  62. Li, Y.; Mao, L.; Yu, L.; Li, X.; Zhang, J. NiOx nanoparticles obtained from hydrothermally treated NiC2O4 as an electron blocking layer for organic photodetectors. Nanotechnology 2020, 31, 505601.
  63. Li, Y.; Yu, L.; Peng, C.; Mao, L.; Li, X.; Zhang, J. Top-Illuminated Flexible Organic Photodetectors Integrated With Hole Extraction Layers Synthesized With Solution-Processed NiOx Films at Room Temperature. IEEE Trans. Electron. Devices 2020, 67, 4308–4312.
  64. Yoon, S.; Koh, C.W.; Woo, H.Y.; Chung, D.S. Systematic Optical Design of Constituting Layers to Realize High-Performance Red-Selective Thin-Film Organic Photodiodes. Adv. Opt. Mater. 2018, 6, 1701085.
  65. Kim, H.; Lee, K.-T.; Zhao, C.; Guo, L.J.; Kanicki, J. Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode. Org. Electron. 2015, 20, 103–111.
  66. Shekhar, H.; Fenigstein, A.; Leitner, T.; Lavi, B.; Veinger, D.; Tessler, N. Hybrid image sensor of small molecule organic photodiode on CMOS-Integration and characterization. Sci. Rep. 2020, 10, 7594.
  67. Beliatis, M.J.; Helgesen, M.; García-Valverde, R.; Corazza, M.; Roth, B.; Carlé, J.E.; Jørgensen, M.; Krebs, F.C.; Gevorgyan, S.A. Slot-Die-Coated V2O5as Hole Transport Layer for Flexible Organic Solar Cells and Optoelectronic Devices. Adv. Eng. Mater. 2016, 18, 1494–1503.
  68. Huang, Z.; Zhong, Z.; Peng, F.; Ying, L.; Yu, G.; Huang, F.; Cao, Y. Copper Thiocyanate as an Anode Interfacial Layer for Efficient Near-Infrared Organic Photodetector. ACS Appl. Mater. Interfaces 2021, 13, 1027–1034.
  69. Shekhar, H.; Solomeshch, O.; Liraz, D.; Tessler, N. Low dark leakage current in organic planar heterojunction photodiodes. Appl. Phys. Lett. 2017, 111, 223301.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 916
Revisions: 2 times (View History)
Update Date: 26 Jul 2021
1000/1000