Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1570 word(s) 1570 2021-06-10 06:21:09 |
2 The format is correct -70 word(s) 1500 2021-07-23 05:39:40 | |
3 The format is correct -70 word(s) 1500 2021-07-23 05:43:10 | |
4 minot gramatical correction Meta information modification 1500 2021-07-24 03:16:44 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Bhattacharya, S. Hepatocrinology. Encyclopedia. Available online: https://encyclopedia.pub/entry/12338 (accessed on 29 March 2024).
Bhattacharya S. Hepatocrinology. Encyclopedia. Available at: https://encyclopedia.pub/entry/12338. Accessed March 29, 2024.
Bhattacharya, Saptarshi. "Hepatocrinology" Encyclopedia, https://encyclopedia.pub/entry/12338 (accessed March 29, 2024).
Bhattacharya, S. (2021, July 23). Hepatocrinology. In Encyclopedia. https://encyclopedia.pub/entry/12338
Bhattacharya, Saptarshi. "Hepatocrinology." Encyclopedia. Web. 23 July, 2021.
Hepatocrinology
Edit

Hepatocrinology is defined as the bidirectional, complex relationship between hepatic and endocrine physiology and dysfunctions. The scope of hepatocrinology includes conditions of varied etiology (metabolic, infectious, autoimmune, and invasive) that we term as hepato-endocrine syndromes.

cirrhosis diabetes endocrine hepatogenous diabetes liver NAFLD

1. Introduction

The subject ‘hepatocrinology’ is the field of medicine that studies the bidirectional relationship between hepatic and endocrine physiology, as well as dysfunction. The hepato-insular axis is a part of hepatocrine physiology [1]. Endocrine manifestations of liver insufficiency (cirrhosis) and malignancy, and hepatic complications of various endocrine disorders are included. The possible hepatotropic effect of endocrine drugs, pleiotropic endocrine consequences of medicines used in the management of liver disease, and potential exaptation of endocrine agents for use in hepatology form part of this science.

2. The Liver as an Endocrine Organ

The liver secretes various hormones, which mediate glucose metabolism, blood pressure, growth, and hemorheological homeostasis. These include insulin-like growth factor (IGF)-1, betatrophin, and irisin, all of which mediate insulin sensitivity [2][3]. Angiotensinogen, produced by the liver, is the bedrock of the renin-angiotensin-aldosterone system, which contributes to blood pressure maintenance [4]. Hepcidin and thrombopoietin contribute to the regulation of iron metabolism and platelet production, respectively [5][6]. The hepato-insular axis is a well-researched contributor to glucose metabolism and has been described variously as the entero-insular or adipo-hepato-insular axis [1]. There are several other hormones or their precursors that are synthesized by the liver. Some of the important products are summarized in Table 1 and detailed below.

Table 1. The liver as an endocrine organ.
Action Hormones Reference
Hormone synthesis IGF-1 Bach [2]
Angiotensinogen Matsuaska [4]
Thrombopoietin Hitchcock [6]
Hepcidin Ruchala [5]
Betatrophin Raghow [3]
Proprotein convertase subtilsin-kexin type 9 Yadav [7]
Hormone action modulation IGF binding protein 1 to 6 Allard [8]
Sex hormone-binding globulin Selby [9]
Thyroid hormone-binding globulin Schussler [10]
Transthyretin Palha [11]
Corticosteroid binding globulin Breuner [12]
Vitamin D binding protein Bouillon [13]
IGF—insulin-like growth factor.

3. Sexual Dimorphism in Liver Disorders

Many liver diseases show differential gender distribution. NAFLD is more common in men during the reproductive age group, but is more frequent in women after menopause, indicating a possible protective role of estrogen [14]. HCC occurs more commonly in men, while the risk of autoimmune liver diseases such as primary biliary cirrhosis and autoimmune hepatitis is more common in women [15]. Apart from sex hormones, differences in xenobiotics, immune function, genetic alterations, and receptor expression are presumed to drive the dichotomy [16].

4. Endocrine Manifestations of Hepatic Disease

The liver modulates the functioning of the endocrine system directly or indirectly in multiple ways. Liver dysfunction is thus predictably associated with various endocrine disorders. The significant anomalies have been detailed below and depicted in Figure 1.

9. Hepatic Effect of Endocrine Drugs

The endocrine drugs can have harmful as well as beneficial effects on the liver. Both anabolic steroids and estrogens can cause cholestasis, hepatic adenoma, focal nodular hyperplasia, and other hepatic disorders [39][40]. Acute liver failure has been reported with diverse agents such as propylthiouracil (used for hyperthyroidism) and high doses of methylprednisolone [41][42]. Orlistat, a commonly used therapy for weight loss, has also been described to cause subacute and acute liver failure [43].

10. Endocrine Effects of Drugs Used in Hepatology

Spironolactone, commonly used for the management of ascites in patients with cirrhosis, is an anti-androgen which has beneficial effects in PCOS in women, but causes painful gynecomastia in males [44][45]. Interferon-alpha used for management of hepatitis C infection can result in thyroid dysfunction [46]. Beta-blockers have often been associated with erectile dysfunction [47]. Table 5 depicts the common drug interactions in hepatocrinology.

Table 5. Pharmacological interactions in hepatocrinology.
Hepatic Effects of Endocrine Drugs
Drugs Adverse Effects
Anabolic androgenic steroid [39] Hepatic adenoma, hepatocellular carcinoma, cholestasis, and peliosis hepatis.
Estrogen/oral contraceptive pills [40] Intrahepatic canalicular cholestasis, hepatic adenomas, focal nodular hyperplasia, hemangioma or hamartoma, peliosis hepatis, and Budd Chiari syndrome
Tamoxifen [48] NAFLD
Propylthiouracil, methimazole, carbimazole [41] Hepatitis, cholestasis, and acute liver failure
Corticosteroids [42] Hepatic enlargement, steatosis, glycogenosis. NAFLD, exacerbate chronic viral hepatitis, and high doses of intravenous methylprednisolone—acute liver failure (sometimes fatal)
Vasopressin receptor antagonist [49] Transaminitis and acute liver failure
Orlistat [43] Cholelithiasis, cholestatic hepatitis, and acute and subacute liver failure
Drugs Beneficial effects
Pioglitazone [50] Beneficial effect on NAFLD
GLP-1RA [50] Possible beneficial effect on NAFLD
SGLT-2 inhibitors [50] Possible beneficial effect on NAFLD
Saroglitazar [50] Possible beneficial effect on NAFLD
Corticosteroids [51] Treatment of autoimmune hepatitis and prevention of rejection of liver transplant
Somatostatin analogs (octreotide and others) [52] Treatment of variceal bleeding (decreases portal blood flow)
Vasopressin analogs (terlipressin) [52] Treatment of variceal bleeding (decreases portal blood flow)
Endocrine Effects of Drugs Used in Hepatology
Drugs Adverse effects
Spironolactone [45] Gynaecomastia, and hypogonadism in men
Beta-blockers [47] Erectile dysfunction
Interferon-alpha [46] Hypothyroidism, autoimmune (Hashimoto’s) thyroiditis, destructive thyroiditis, and Graves’ disease
Drugs Beneficial effects
Ursodeoxycholic acid [53] Possible beneficial effect in metabolic syndrome
Spironolactone [44] Treatment of PCOS
NAFLD—non-alcoholic fatty liver disease, PCOS—polycystic ovary syndrome, GLP-1RA glucagon-like peptide receptor agonist, SGLT-2—sodium glucose cotransporter-2, GGT—γ-glutamyltransferase, and ALT—alanine aminotransferase.

References

  1. Wewer Albrechtsen, N.J.; Pedersen, J.; Galsgaard, K.D.; Winther-Sørensen, M.; Suppli, M.P.; Janah, L.; Gromada, J.; Vilstrup, H.; Knop, F.K.; Holst, J.J. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr. Rev. 2019, 40, 1353–1366.
  2. Bach, L.A. IGF-binding proteins. J. Mol. Endocrinol. 2018, 61, T11–T28.
  3. Raghow, R. Betatrophin: A liver-derived hormone for the pancreatic β-cell proliferation. World J. Diabetes 2013, 4, 234–237.
  4. Matsusaka, T.; Niimura, F.; Shimizu, A.; Pastan, I.; Saito, A.; Kobori, H.; Nishiyama, A.; Ichikawa, I. Liver Angiotensinogen Is the Primary Source of Renal Angiotensin II. J. Am. Soc. Nephrol. 2012, 23, 1181–1189.
  5. Ruchala, P.; Nemeth, E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol. Sci. 2014, 35, 155–161.
  6. Hitchcock, I.S.; Kaushansky, K. Thrombopoietin from beginning to end. Br. J. Haematol. 2014, 165, 259–268.
  7. Yadav, K.; Sharma, M.; Ferdinand, K. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present perspectives and future horizons. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 853–862.
  8. Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front. Endocrinol. 2018, 9, 117.
  9. Selby, C. Sex Hormone Binding Globulin: Origin, Function and Clinical Significance. Ann. Clin. Biochem. Int. J. Lab. Med. 1990, 27, 532–541.
  10. Schussler, G.C. The Thyroxine-Binding Proteins. Thyroid 2000, 10, 141–149.
  11. Palha, J.A. Transthyretin as a Thyroid Hormone Carrier: Function Revisited. Clin. Chem. Lab. Med. 2002, 40, 1292–1300.
  12. Breuner, C.W.; Beyl, H.E.; Malisch, J.L. Corticosteroid-binding globulins: Lessons from biomedical research. Mol. Cell. Endocrinol. 2020, 514, 110857.
  13. Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2020, 10, 910.
  14. Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469.
  15. Kur, P.; Kolasa-Wołosiuk, A.; Misiakiewicz-Has, K.; Wiszniewska, B. Sex Hormone-Dependent Physiology and Diseases of Liver. Int. J. Environ. Res. Public Health 2020, 17, 2620.
  16. Biswas, S.; Ghose, S. Divergent impact of gender in advancement of liver injuries, diseases, and carcinogenesis. Front. Biosci. Sch. Ed. 2018, 10, 65–100.
  17. Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M. The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393.
  18. Lonardo, A.; Mantovani, A.; Lugari, S.; Targher, G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int. J. Mol. Sci. 2019, 20, 2841.
  19. de Ridder, J.; de Wilt, J.H.W.; Simmer, F.; Overbeek, L.; Lemmens, V.; Nagtegaal, I. Incidence and origin of histologically confirmed liver metastases: An explorative case-study of 23,154 patients. Oncotarget 2016, 7, 55368–55376.
  20. Chan, U.; Chan, W.-T.; Ting, W.-H.; Ho, C.-S.; Liu, H.-C.; Lee, H.-C. Cholestasis caused by panhypopituitarism and acquired cytomegalovirus infection in a 2-month-old male infant: A case report. Medicine 2017, 96, e6757.
  21. Korkmaz, L.; Akın, M.A.; Güneş, T.; Daar, G.; Baştuğ, O.; Yıkılmaz, A.; Kurtoğlu, S. Unusual Course of Congenital Hypothyroidism and Route of the L-Thyroxine Treatment in a Preterm Newborn. J. Clin. Res. Pediatric Endocrinol. 2014, 6, 177–179.
  22. Villalba, N.L.; Zulfiqar, A.-A.; Saint-Mezard, V.; Alonso, M.B.; Kechida, M.; Zamorano, N.F.; Ortega, S.S. Myxedema coma: Four patients diagnosed at the Internal Medicine Department of the Dr. Negrin University Hospital in Spain. Pan Afr. Med. J. 2019, 34, 7.
  23. Abebe, A.; Eck, L.M.; Holyoak, M. Severe cholestatic jaundice associated with Graves’ disease. Clin. Case Rep. 2018, 6, 2240–2245.
  24. Piantanida, E.; Ippolito, S.; Gallo, D.; Masiello, E.; Premoli, P.; Cusini, C.; Rosetti, S.; Sabatino, J.; Segato, S.; Trimarchi, F.; et al. The interplay between thyroid and liver: Implications for clinical practice. J. Endocrinol. Investig. 2020, 43, 885–899.
  25. Subedi, A.; Kumar, V.C.S.; Sharma, A.; Hoilat, G.; John, S. Persistent lactic acidosis in the Mauriac syndrome in type 1 diabetes mellitus. Bayl. Univ. Med Cent. Proc. 2021, 34, 382–383.
  26. Agabio, R.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex Differences in Alcohol Use Disorder. Curr. Med. Chem. 2017, 24, 2661–2670.
  27. Kaneko, K.; Yatsuya, H.; Li, Y.; Uemura, M.; Chiang, C.; Hirakawa, Y.; Ota, A.; Tamakoshi, K.; Aoyama, A. Association of gamma-glutamyl transferase and alanine aminotransferase with type 2 diabetes mellitus incidence in middle-aged Japanese men: 12-year follow up. J. Diabetes Investig. 2018, 10, 837–845.
  28. Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis. Markers 2015, 2015, 1–18.
  29. Lee, S.M.; Park, J.S.; Han, Y.J.; Kim, W.; Bang, S.H.; Kim, B.J.; Park, C.-W.; Kim, M.Y. Elevated Alanine Aminotransferase in Early Pregnancy and Subsequent Development of Gestational Diabetes and Preeclampsia. J. Korean Med Sci. 2020, 35, e198.
  30. Zhao, W.; Zhang, L.; Zhang, G.; Varkaneh, H.K.; Rahmani, J.; Clark, C.; Ryan, P.M.; Abdulazeem, H.; Salehisahlabadi, A. The association of plasma levels of liver enzymes and risk of gestational diabetes mellitus: A systematic review and dose–response meta-analysis of observational studies. Acta Diabetol. 2019, 57, 635–644.
  31. Marchesini, G.; Avagnina, S.; Barantani, E.G.; Ciccarone, A.M.; Corica, F.; Dall’Aglio, E.; Grave, R.D.; Morpurgo, P.S.; Tomasi, F.; Vitacolonna, E. Aminotransferase and gamma-glutamyltranspeptidase levels in obesity are associated with insulin resistance and the metabolic syndrome. J. Endocrinol. Investig. 2005, 28, 333–339.
  32. Crownover, B.K.; Covey, C.J. Hereditary hemochromatosis. Am. Fam. Physician 2013, 87, 183–190.
  33. Mulligan, C.; Bronstein, J.M. Wilson Disease: An Overview and Approach to Management. Neurol. Clin. 2020, 38, 417–432.
  34. Kahaly, G.J.; Frommer, L. Polyglandular autoimmune syndromes. J. Endocrinol. Investig. 2018, 41, 91–98.
  35. Tran, H.A.; Jones, T.L.; Ianna, E.A.; Foy, A.; Reeves, G.E.M. Thyroid disease in chronic hepatitis C infection treated with combination interferon-α and ribavirin: Management strategies and future perspective. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2013, 19, 292–300.
  36. Ellingwood, S.S.; Cheng, A. Biochemical and clinical aspects of glycogen storage diseases. J. Endocrinol. 2018, 238, R131–R141.
  37. Hong, Y.S.; Chang, Y.; Ryu, S.; Cainzos-Achirica, M.; Kwon, M.-J.; Zhang, Y.; Choi, Y.; Ahn, J.; Rampal, S.; Zhao, D.; et al. Hepatitis B and C virus infection and diabetes mellitus: A cohort study. Sci. Rep. 2017, 7, 1–7.
  38. Qu, Q.; Wang, S.; Chen, S.; Zhou, L.; Rui, J.-A. Prognostic role and significance of paraneoplastic syndromes in hepatocellular carcinoma. Am. Surg. 2014, 80, 191–196.
  39. Niedfeldt, M.W. Anabolic Steroid Effect on the Liver. Curr. Sports Med. Rep. 2018, 17, 97–102.
  40. Ponnatapura, J.; Kielar, A.; Burke, L.M.; Lockhart, M.E.; Abualruz, A.-R.; Tappouni, R.; Lalwani, N. Hepatic complications of oral contraceptive pills and estrogen on MRI: Controversies and update-Adenoma and beyond. Magn. Reson. Imaging 2019, 60, 110–121.
  41. Akmal, A.; Kung, J. Propylthiouracil, and methimazole, and carbimazole-related hepatotoxicity. Expert Opin. Drug Saf. 2014, 13, 1397–1406.
  42. Zoubek, M.E.; Pinazo-Bandera, J.; Ortega-Alonso, A.; Hernández, N.; Crespo, J.; Contreras, F.; Medina-Cáliz, I.; Sanabria-Cabrera, J.; Sanjuan-Jiménez, R.; González-Jiménez, A.; et al. Liver injury after methylprednisolone pulses: A disputable cause of hepatotoxicity. A case series and literature review. United Eur. Gastroenterol. J. 2019, 7, 825–837.
  43. Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-associated adverse effects and drug interactions: A critical review. Drug Saf. 2008, 31, 53–65.
  44. Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment with Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573.
  45. Lainscak, M.; Pelliccia, F.; Rosano, G.; Vitale, C.; Schiariti, M.S.M.; Greco, C.; Speziale, G.; Gaudio, C. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone. Int. J. Cardiol. 2015, 200, 25–29.
  46. Jadali, Z. Autoimmune thyroid disorders in hepatitis C virus infection: Effect of interferon therapy. Indian J. Endocrinol. Metab. 2013, 17, 69–75.
  47. Sharp, R.P.; Gales, B.J. Nebivolol versus other beta blockers in patients with hypertension and erectile dysfunction. Ther. Adv. Urol. 2017, 9, 59–63.
  48. Chang, H.-T.; Pan, H.-J.; Lee, C.-H. Prevention of Tamoxifen-related Nonalcoholic Fatty Liver Disease in Breast Cancer Patients. Clin. Breast Cancer 2018, 18, e677–e685.
  49. Wu, Y.; Beland, F.; Chen, S.; Liu, F.; Guo, L.; Fang, J.-L. Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochem. Pharmacol. 2015, 95, 324–336.
  50. Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 2018, 53, 362–376.
  51. Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. Autoimmune hepatitis: Standard treatment and systematic review of alternative treatments. World J. Gastroenterol. 2017, 23, 6030–6048.
  52. Bunchorntavakul, C.; Reddy, K.R. Pharmacologic Management of Portal Hypertension. Clin. Liver Dis. 2019, 23, 713–736.
  53. Di Ciaula, A.; Wang, D.Q.-H.; Portincasa, P. Cholesterol cholelithiasis: Part of a systemic metabolic disease, prone to primary prevention. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 157–171.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 596
Revisions: 4 times (View History)
Update Date: 24 Jul 2021
1000/1000