1. Please check and comment entries here.
Table of Contents

    Topic review

    Molecular Biomarkers of Nasopharyngeal Carcinoma

    Subjects: Oncology
    View times: 8
    Submitted by: Shiau Chuen Cheah

    Definition

    Nasopharyngeal carcinoma (NPC) is a cancer that arises from the squamous epithelial cells that cover the lateral wall of the nasopharynx. In contrast to head and neck cancers, NPC has a distinct epidemiology, pathology, clinical characteristics, and treatment response. NPC is an endemic form of malignancy in certain parts of the world.

    1. Introduction

    A well-known risk factor of NPC is the Epstein–Barr virus (EBV). Despite that, distinct ethnic and geographical dissemination of NPC indicates both genetic and environmental factors (diet and tobacco smoking) play an important role in its aetiology [1]. Complex interactions of multiple factors including viral infection, an individual’s genetic susceptibility, environmental factors, and dietary factors have driven the pathogenesis of this malignancy.

    Up to 80% of NPC patients are diagnosed at advanced stages (clinical stages III and IV) and 10% at distant metastasis, which is associated with unfavourable outcome and poor prognosis [2][3][4][5]. This is mainly due to the fact that it is asymptomatic in its early stages, its high metastatic rate, and its inaccessibility for examination, whereby examination of the local primary tumour in the small curved structure of the nasal cavity is difficult [6]. The common symptoms of NPC include epistaxis, nasal obstruction, hearing loss, otitis media, headache, diplopia, numbness, and neck lump [7][8].

    In recent decades, the advancement of diagnostic imaging and the use of concurrent radio and systemic therapy have improved overall prognosis and treatment outcomes [2]. The tumour-node-metastasis (TNM) staging system developed by the American Joint Committee on Cancer and the National Comprehensive Cancer Network (NCCN) is used in treatment decisions for NPC patients at different stages. Radiotherapy (RT) is used as a standard treatment for early stage NPC, while concurrent chemotherapy (CT) followed by adjuvant chemotherapy is the preferred treatment for stages III and IV NPC.

    Although overall survival (OS) has improved due to these advanced treatments, there are still many controversies regarding these treatment approaches. For example: (1) patients still encounter tumour recurrence or develop distant metastasis after undergoing RT, especially those in the advanced stages, resulting in death [1]; (2) most patients, especially those in the advanced stages of NPC, did not benefit from the abovementioned NPC treatments [9][10]; (3) a weak tolerance to the high toxic side effects of these therapeutics has led to a delay in treatment, and ultimately death (for example, nasopharynx haemorrhage, a dangerous and serious condition resulting from radiotherapy has led to 35.7% to 100% mortality [7][11]); (4) these treatments eventually allow for tumour progression and emergency due to radio- or chemo-resistance [12][13]; (5) the advanced stages of NPC are associated with poor prognosis and poor response towards the available treatments; and (6) the absence of a reliable prediction tool for NPC recurrence and metastasis. Treatment failure for advanced stages (distant metastasis) is the primary cause of mortality from NPC, accounting for 50,000 deaths annually [4]. Since the 10-year OS rate for stage I patients is as high as 98%, it seems that the mortality rate can be reduced if the NPC is diagnosed at an earlier stage [14]. Currently, the TNM staging system does not provide information on predicting or identifying the risk of NPC progression. This has highlighted the issues of NPC diagnosis and prognosis, as well as treatment. Hence, most studies now focus on uncovering the molecular biomarkers in NPC to improve the early diagnosis approaches and discover prognostic indicators. In the current review, we have reviewed the research status of biomarkers in NPC for early diagnosis and prognosis (metastasis and recurrence).

    2. Diagnostic and Prognostic Biomarker Discovery for NPC

    The use of biomarkers in cancer management has recently been increased with advancements in genomics, proteomics, and transcriptomics, as well as associated technologies. Studying the biomarkers involved in NPC progression and metastasis enables us to understand the disease, identify an individual’s susceptibility to the disease, and predict or monitor patients’ response toward a therapeutic treatment. Based on their role in disease management, biomarkers can be categorised into two groups: (1) prognostics, which allow for the assessment of the risk of clinical outcomes including recurrence, metastasis, and progression; and (2) diagnostic markers, which identify whether an individual has the specific disease or condition.

    Therefore, biomarkers can improve the early diagnosis and prognosis approaches by assisting in identifying patients who are susceptible to developing NPC or who are at a high risk or distant metastasis or recurrence. Biomarkers are the key to preventing NPC progression, recurrence, and metastasis, as well as to developing effective therapeutic treatments. With the aid of high throughput ‘omics’ technologies, knowledge on the aetiology, tumorigenesis, and progression of NPC has progressed much faster, thus allowing researchers to identify potential molecular biomarkers. Several types of potential NPC molecular biomarker, including DNA (genomic), mRNA (transcriptomic), protein (proteomic), and metabolite (metabolomics) biomarkers, have been identified ( Table 1 ).

    Table 1. Potential biomarkers for early diagnosis of NPC.
    Biomolecules Full Name Role Aberration Sources
    Genomic biomarkers
    COX-2 Cyclooxygenase-2 Cell proliferation, apoptosis Polymorphism in rs5275 [15]
    MCP-1 Monocyte chemoattractant protein-1 Monocytes or macrophages migration and infiltration Polymorphism in rs1024611 [16]
    GRP78 Glucose-regulated protein Apoptosis Polymorphism in rs3216733 [17]
    DC-SIGN Dendritic cells specific intercellular adhesion molecule 3-grabbing nonintegrin Induced immune cells Polymorphism in rs7252229, rs735240, rs4804803 or rs2287886 [18][19]
    HLA-A2-B46 (Chinese) Human leukocyte antigen-A2-B46 Immune response Polymorphism in chromosome 6p21 [20][21]
    HLA-A2-B-17 (Chinese) Human leukocyte antigen-A2-B-17 Immune response
    HLA-B5 (Caucasians) Human leukocyte antigen-B5 Immune response
    IL-13 Interleukin-13   Polymorphism in rs20541 (TT genotype) [22]
    Chromosome 3p and 9p N/A N/A Chromosomal loss [23]
    Chromosome 12 N/A N/A Gain number [24]
    RASSF1 Ras association (RalGDS/AF-6) domain family member 1A Tumour suppression, cell growth, proliferation copy number variant in in 3p21 [25]
    CDKN2A, CDKN2B Cyclin-dependent kinase inhibitor 2A, 2B Tumour suppression, cell cycle Allelic deletion in 9p21.3 [26]
    EGFR Epidermal growth factor receptor Cell proliferation, cell cycles, apoptosis Upregulation [27][28]
    BamH1-W Bacillus amyloliquefaciens 1 WZhet Viral replicative cycle Upregulation [29][30]
    A73 N/A Cell proliferation and angiogenesis Polymorphism in A157154C [14][31]
    RPMS1 N/A Cell proliferation and angiogenesis Polymorphism in G155391A
    BALF2 N/A Viral infection and replication EBV variants with 162476_C or 163364_T [32]
    miRNA biomarkers
    miR17-92 MicroRNA17-92 Targeting PTEN and apoptosis protein Upregulation [33]
    miR-155 MicroRNA-155 Leucosis Upregulation [34]
    miR-378 MicroRNA-378 Affect tumour suppression, cell cycle Upregulation [35][36]
    miR-141 MicroRNA-141
    miR144-3p MicroRNA-144-3p Targeting PTEN/Akt, cell cycle, apoptosis Upregulation [37]
    miR-17-5p MicroRNA-17-5p
    miR-20a-5p MicroRNA-20a-5p
    miR-20b-5p MicroRNA-20b-5p
    miR-205-5p MicroRNA-205-5p
    miR-16 MicroRNA-16 Cell proliferation, invasion Upregulation [34]
    miR-21 MicroRNA-21 Targets PDCD4, PTEN, SPRY, ERCK, and Bcl-2 family proteins
    miR-24 MicroRNA-24 Epithelial-to-mesenchymal transition Upregulation
    miR-146a   Inflammation Upregulation [38]
    miR-34 MicroRNA-34 Tumour suppression Downregulation [33]
    miR-143 MicroRNA-143 Tumour suppression
    miR-145 MicroRNA-145 Tumour suppression
    let-7b-5p MicroRNA let-7b-5p Cell proliferation Downregulation [37]
    miR-140-3p MicroRNA-140-3p Cell proliferation
    Platelet miR-34c-3p MicroRNA-34c-3p Tumour suppression Upregulation [22]
    Platelet miR-18a-5p MicroRNA-18a-5p Tumour suppression
    MALAT1 metastasis associated with lung adenocarcinoma transcript 1 Invasion Upregulation [39]
    AFAP1-AS1 actin filament-associated protein 1-antisense RNA1 Invasion
    AL359062 N/A N/A
    EBER Epstein–Barr encoding region Cell proliferation, apoptosis, innate immunity Four base deletion SNPs [40]
    miR-BART7-3p BamH1 A rightward transcript 7-3p Cell proliferation targeting NF-κB signalling, angiogenesis targeting AMPK/mTOR/HIF1 signalling Upregulation [2][41][42]
    miR-BART13-3p BamH1 A rightward transcript 13-3p Cell proliferation targeting NF-κB signalling, angiogenesis targeting AMPK/mTOR/HIF1 signalling
    Protein biomarkers
    PAI-1 Plasminogen activator inhibitor 1 Angiogenesis, signalling activities Upregulation [43]
    Fibronectin N/A Cell adhesion
    Mac-2 BP Mac-2-binding protein Cell adhesion
    CTSD Cathepsin D Apoptosis Upregulation [44]
    POSTN Periostin Cell adhesion Upregulation [45]
    CK18 Cytokeratin 18 Transcription Upregulation [46]
    KRT8 Keratin-8 Tumour necrosis factor-mediated signaling pathway, cell differentiation Upregulation [44]
    STMN1 Stathmin-1 Signal transduction
    LCP1 L-plastin Cell differentiation Upregulation [47]
    LGALS1 Galectin-1 Apoptosis Upregulation [48]
    S100A9 S100 calcium-binding protein A9 Cell proliferation, innate immunity, apoptosis Upregulation [47]
    CCL5 C-C motif chemokine 5 Cell adhesion, migration, apoptosis Upregulation [49]
    CLIC1 Chloride intracellular channel 1 Cell cycle, signal transduction Upregulation [50]
    LMP1 Latent membrane protein Signalling activities Upregulation [51]
    P-Thr-sv-5 N/A Gene expression (sub-variant of EBNA1) subvariant of EBNA1 [52]
    EBNA1/IgA EBV nuclear antigens immunoglobulin A Antibody against EBV antigen Increased level [53][54]
    VCA/IgA Viral capsid antigen immunoglobulin A Antibody against EBV antigen
    BALF2/Ab BALF2 antibodies Antibody against EBV antigen Increased level [32]
    Metabolite biomarkers
    kynurenine N/A Metabolism Upregulation [55]
    N-acetylglucosaminylamine N/A Metabolism
    N-acetylglucosamine hydroxyphenylpyruvate N/A Metabolism
    Pyroglutamate N/A Metabolism Upregulation [56]
    Glucose N/A Metabolism
    Glutamate N/A Metabolism
    Glycerol 1-hexadecanoate N/A Metabolism Upregulation [57]
    b-hydroxybutyrate N/A Metabolism
    Arachidonic acid N/A Metabolism
    Stearic acid N/A Metabolism
    Linoleic acid N/A Metabolism
    Proline N/A Metabolism

    N/A. Not available.

    3. NPC Diagnostic Biomarkers

    Consistent findings have revealed that NPC diagnostic accuracy could be enhanced by using a panel of miRNA biomarkers. Liu et al. (2013) reported the sensitivity and specificity of an NPC diagnostic method using five plasma mi-RNAs (miR-16, miR-21, miR-24, miR-155, and miR-378) were 87.7% and 82.0%, respectively [34]. Another study compiling 12-miRNA signatures for early diagnosis of NPC demonstrated an accuracy of up to 100% [58]. These 12-miRNA were found to play an important role in NPC development by modulating its target genes to inhibit NF-κB kinase regulator apoptosis and regulate platelet-derived growth factor receptor α. Collectively, these findings have provided an encouraging message on the use of miRNA as a biomarker for the early diagnosis of NPC.

    Recently, tumour-educated platelets that have accurate diagnostic efficiency in various other types of cancer look like a promising avenue for NPC diagnostic marker discovery. Two platelet miRNAs, namely miR-34c-3p and miR-18a-5p, which have been detected in NPC patients and healthy controls, were found to have high diagnostic ability with a sensitivity of 92.59% and specificity of 86.11% [22]. However, further functional and validation studies were not carried out. Nevertheless, it still seems to be promising as the platelets can alter the transcriptome and molecular signal by affecting its pre-mRNA splicing upon instructions given by the tumour [59]. Additionally, in contrast to other samples, its RNA expression is not affected by the genomic DNA, thus the RNA expression truly corresponds to the pathological condition of the cancer.

    Proteins are found to be involved in regulating many physiological processes, including immune response, metabolism, and cellular signalling pathways, while tumour cells can utilise the protein by-product to make their favourite proteins, thus affecting anabolism and catabolism, eventually leading to an alteration of protein expression patterns. Therefore, these tumour synthesised oncogenic proteins can be used to reflect the real time state of diseases and used for NPC biomarker research.

    Most of these studies have used high throughput mass spectrometry technology, data processing, system integration, cluster index analysis, and integration with information modelling to look for metabolites that reflect clinical disease phenotypes [60]. Numerous metabolites, including kynurenine, N-acetylglucosaminylamine, N-acetylglucosamine hydroxyphenylpyruvate, pyroglutamate, glucose, and glutamate, have been evaluated as potential biomarkers for early NPC diagnosis [55][56]. Further studies conducted in larger NPC cohorts also validated that a panel of seven metabolites including glycerol 1-hexadecanoate, b-hydroxybutyrate, linoleic acid, arachidonic acid, stearic acid, glucose, and proline provided strong NPC diagnosis from disease free controls, with a sensitivity of 88.0% and a specificity of 92.0% [57].

    4. NPC Prognosis Biomarkers

    Up to 40% of NPC patients have disease recurrence or distant metastasis even after they receive a series of CT or RT [61]. This indicates that tumour cells are able to recover from damaged cells and survive by having resistance to current therapies (CT or RT). Therefore, prediction of NPC recurrence or metastasis risk after treatment is crucial since it is the major cause of mortality in NPC patients. Particularly, molecular components that are metastasis susceptible or capable of affecting the radio- or chemo-sensitivity can be used as a prognosis biomarker ( Table 2 ).

    Table 2. Potential prognosis and predictive biomarkers for NPC therapeutic resistance or metastasis and recurrence after treatment.
    Biomolecules Name Role Aberration Sources
    β-catenin 1 Beta-catenin1 Activate multiple downstream growth signalling components such as cyclin D1 and c-Myc Polymorphism in rs1880481 or rs3864004 [62]
    GSK-3β glycogen synthase kinase-3β Cell growth, metabolism, gene transcription, protein translation, cytoskeletal organisation Polymorphism in rs3755557
    APC adenomatous polyposis coli Cell adhesion Polymorphism in rs454886
    XRCC1 X-ray repair cross-complementing 1 DNA repair Polymorphism in rs25489 or Codon399 [63][64][65][66]
    CT Calcitonin receptor Calcium homeostasis Polymorphism in rs2528521
    VCP Valosin-containing protein Proteolysis Polymorphism in rs2074549
    IL-13 Interleukin-13 Chinese population with IL-13 rs20541 Polymorphisms in rs20541 [22]
    ERCC1 Excision repair 1 endonuclease non-catalytic subunit DNA repair Polymorphism with C118T genotype [67]
    EBV-DNA Epstein–Barr virus-DNA EBV genome Upregulation [28]
    YBX3 Y-Box Binding Protein 3 Apoptosis, Gene expression Upregulation [68]
    CBR3 Carbonyl reductase 3 Xenobiotic metabolic process
    LRIG1 Leucine-rich repeats and immunoglobulin-like domains 1 Negative regulator of tyrosine kinases signalling
    CXCL10 Chemokine C-X-C motif ligand 10 Chemokine receptors recruit tumour infiltrating T-lymphocytes, tumour microenvironment
    DCTN1 Dynactin-1 G2/M transition of mitotic cell cycle Downregulation
    GRM4 Glutamate metabotropic receptor 4 Tumour suppression
    HDLBP High density lipoprotein binding protein Cholesterol metabolic process
    ANXA1 Annexin Cell cycle, apoptosis
    POLR2M RNA polymerase II subunit M Negative regulator of transcriptional
    CLASP1 Cytoplasmic linker associated protein 1 Dynamic microtubules stabilization
    FNDC3B Fibronectin type III domain-containing protein 3B Positive regulator of adipogenesis
    WSB2 WD repeat and SOCS box-containing protein 2 Protein ubiquitination, post-translation modification
    WNK1 lysine deficient protein kinase 1 T-cell receptor signalling pathway
    miR-203 MicroRNA-203 Targeting IL-8/Akt signalling Downregulation [69]
    miR-324-3p MicroRNA-324-3p Tumour suppression Downregulation [70][71]
    miR-93-3p MicroRNA-93-3p Targeting Wnt/β-catenin signalling
    miR-4501 MicroRNA-4501 Cellular process
    miR-371a-5p MicroRNA-371a-5p Cellular pathway, apoptosis Upregulation
    miR-34c-5p MicroRNA-34c-5p Cell proliferation, apoptosis, targeting JAK2/STAT3 signalling pathway
    miR-1323 MicroRNA-1323 DNA repair
    miR-9 MicroRNA-9 MHC class I and interferon-regulated gene expression Downregulation [72]
    miR-92a MicroRNA-92a Invasion, migration Upregulation [73]
    miR-574-5p MicroRNA-574-5p Mesenchymal transition Downregulation [3]
    miR-296-3p Micro-296-3p Cytoplasmic Translocation of c-Myc Downregulation [74][75]
    RNA_0000285   homeodomain interacting protein kinase 3 (HIPK3) Upregulation [76]
    EGFR Epidermal growth factor receptor Cell proliferation, cell cycles, apoptosis Upregulation [77]
    GSTP1 Glutathione S-transferase P1 Cell adhesion, apoptosis, negative regulator of NF-kB signaling Methylation [78]
    IGF-1R Insulin-like growth factor-1 receptor Cell proliferation, cell cycles and apoptosis Upregulation [77]
    Jab1 C-Jun activation domain-binding protein-1 Cell proliferation, targeting negative regulator proteins and tumour suppressors (p27 and p53) Upregulation [79]
    EMT Epithelial-to-mesenchymal transition Carcinogenesis and metastatic progression Upregulation [80]
    β-catenin N/A Activate multiple downstream growth signalling components such as cyclin D1 and c-Myc Upregulation [81]
    E-cadherin N/A Cell adhesion, tumour suppression Downregulation
    GnT-V N-acetylglucosaminyltransferase-V Protein glycosylation, cell proliferation Upregulation [82]
    Bcl2 B-cell lymphoma 2 Apoptosis Upregulation [83][84]
    SPARC Secreted protein acidic and Cysteine rich Extracellular matrix synthesis, cell shape Upregulation [85]
    ERPIND1 Serpin family D member 1S Invasion
    C4B Complement C4B Component of the classical activation pathway
    PPIB Ppeptidylprolyl lsomerase B Cyclosporine A-mediated immunosuppression
    FAM173A Family with sequence similarity 173 member A Adenine nucleotide translocase
    Maspin Mammary serine protease inhibitor Tumour suppression Upregulation [86][87]
    GRP78 Glucose-regulated protein Apoptosis
    Mn-SOD Manganese superoxide dismutase Apoptosis
    14-3-3σ 14-3-3 protein sigma Cell cycle arrest, DNA damage response, signal transduction Downregulation
    ANXA1,3 Annexin A1, A3 Cell cycle, apoptosis Downregulation [88][89][90]
    Nm23 H1 Non-metastatic clone 23, isoform H1 TGF-β signaling Upregulation
    KRT1 Keratin 1 Angiogenesis Upregulation [91]
    SAA Serum amyloid A MAPK activities, innate immune response Downregulation [92]
    HSP27 Heat shock protein 27 Apoptosis, cell differentiation Upregulation [93]

    N/A. Not available

    One study acknowledged the value of EBV-DNA for early NPC recurrence after treatment [94]. Most of the patients had EBV-DNA elevated prior to the disease recurrence [28]. The accuracy, sensitivity, and specificity of recurrence diagnostic using EBV-DNA were 87.0%, 82.3%, and 80.0%, respectively [28]. In another study, the circulating EBV-DNA concentration was found to be higher in recurrent NPC plasma compared to primary NPC plasma, thus implying that recurrence risk can be predicted by detecting the circulating EBV-DNA [95]. The National Comprehensive Cancer Network also recommends monitoring NPC patients with EBV-DNA [96]. This EBV-DNA biomarker was further strengthened by combination with a predictive tool, namely distant metastasis gene signature (DMGN), which constitutes 13 genes including DCTN1 , YBX3 , GRM4 , HDLBP, POLR2M , CLASP1 , CBR3 , FNDC3B , WSB2 , LRIG1 , ANXA1 , WNK1 , and CXCL10 to examine whether the patients can benefit from concurrent CT. The patients with the higher predicted metastasis risk would have less sensitivity to concurrent CT [68].

    Moreover, by looking at mRNA involved in NPC progression, the subtype of disease, prognosis, and therapeutic effect in NPC could be predicted [97][98][99]. For example, analysed miRNA expression profile of radioresistant and radiosensitive NPC cell lines by next generation deep sequencing have revealed that downregulation of miR-203, miR-324-3p, miR-93-3p, and miR-4501 and upregulation of miR-371a-5p, miR-34c-5p, and miR-1323 contribute to mediating radio-resistance in NPC [69][70][88]. Additionally, miR-574-5p, miR-9 and miR92a, which modulate the expression of MHC class I and interferon-regulated genes associated with NPC metastasis, could potentially be non-invasive blood-based biomarkers for metastasis prediction [72][73]. RNA sequencing of NPC patients’ peripheral blood mononuclear cells (PBMC) before and after RT has revealed 11 potential mRNA prognostic biomarkers for NPC for post-RT evaluation [100]. RNA_0000285 at homeodomain interacting protein kinase 3 (HIPK3) was observed in high level radio-resistance NPC patients and low radiosensitive NPC patients, thus showing its ability to predict NPC radiosensitivity [76].

    Furthermore, as mentioned previously, the residue of cigarette smoke promotes cancer progression. Cigarette smoke was found to be associated with poor prognosis of chemotherapy and radiotherapy. Nicotine in cigarette smoke promoted chemoresistance by affecting the ATP-biding cassette transporter G2 via downregulation of miR-296-3p and Akt-mediated pathways [74][75]. Furthermore, hypoxia induced through smoking can facilitate tumour angiogenesis, invasion, reoccurrence, and metastasis. Therefore, the downregulation of miR-296-3p in patients could be a potential prognosis or predictive biomarker for recurrence and metastasis.

    The entry is from 10.3390/cancers13143490

    References

    1. Alotaibi, A.D.; Ahmed, H.G.; Elasbali, A.M. Nasopharyngeal cancer in Saudi Arabia: Epidemiology and possible risk factors. J. Oncol. Sci. 2019, 5, 23–30.
    2. Lu, T.; Guo, Q.; Lin, K.; Chen, H.; Chen, Y.; Xu, Y.; Lin, C.; Su, Y.; Chen, Y.; Chen, M.; et al. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma. Cancer Sci. 2020, 111, 1711–1723.
    3. Mi, J.L.; Xu, M.; Liu, C.; Wang, R.S. Identification of novel biomarkers and small-molecule compounds for nasopharyngeal carcinoma with metastasis. Medicine 2020, 99, e21505.
    4. Mahdavifar, N.; Ghoncheh, M.; Mohammadian-Hafshejani, A.; Khosravi, B.; Salehiniya, H. Epidemiology and Inequality in the Incidence and Mortality of Nasopharynx Cancer in Asia. Osong Public Health Res. Perspect. 2016, 7, 360–372.
    5. Xia, W.X.; Zhang, H.B.; Shi, J.L.; Lu, X.; Wang, L.; Ye, Y.F.; Cao, K.J.; Qian, C.N.; Guo, X.; Xiang, Y.Q. A prognostic model predicts the risk of distant metastasis and death for patients with nasopharyngeal carcinoma based on pre-treatment serum C-reactive protein and N-classification. Eur. J. Cancer 2013, 49, 2152–2160.
    6. Wong, T.S.; Gao, W.; Chan, J.Y.W. Biomarkers in Nasopharyngeal Carcinoma and Ionizing Radiation. In Biomarkers in Cancer, Biomarkers in Disease: Methods, Discoveries and Applications; Preedy, V., Patel, V., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 875–890.
    7. Sireci, F.; Speciale, R.; Sorrentino, R.; Turri-Zanoni, M.; Nicolotti, M.; Canevari, F.R. Nasal packing in sphenopalatine artery bleeding: Therapeutic or harmful? Eur. Arch. Otorhinolaryngol. 2017, 274, 1501–1505.
    8. Wei, W.I.; Sham, J.S. Nasopharyngeal carcinoma. Lancet 2005, 365, 2041–2054.
    9. Sun, X.S.; Xiao, B.B.; Lu, Z.J.; Liu, S.L.; Chen, Q.Y.; Yuan, L.; Tang, L.Q.; Mai, H.Q. Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Front. Oncol. 2020, 10, 255.
    10. Wang, Y.W.; Ho, S.Y.; Lee, S.W.; Chen, C.C.; Litsu, S.; Huang, W.T.; Yang, C.C.; Lin, C.H.; Chen, H.Y.; Lin, L.C. Induction Chemotherapy Improved Long Term Outcomes in Stage IV Locoregional Advanced Nasopharyngeal Carcinoma. Int. J. Med. Sci. 2020, 17, 568–576.
    11. Zhan, J.; Zhang, S.; Wei, X.; Fu, Y.; Zheng, J. Etiology and management of nasopharyngeal hemorrhage after radiotherapy for nasopharyngeal carcinoma. Cancer Manag. Res. 2019, 11, 2171–2178.
    12. Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80.
    13. Chen, Y.; Liu, M.Z.; Liang, S.B.; Zong, J.F.; Mao, Y.P.; Tang, L.L.; Guo, Y.; Lin, A.H.; Zeng, X.F.; Ma, J. Preliminary results of a prospective randomized trial comparing concurrent chemoradiotherapy plus adjuvant chemotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma in endemic regions of china. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1356–1364.
    14. Wu, S.; Liu, W.; Li, H.; Zhao, Z.; Yang, Y.; Xiao, H.; Song, Y.; Luo, B. Conservation and polymorphism of EBV RPMS1 gene in EBV-associated tumors and healthy individuals from endemic and non-endemic nasopharyngeal carcinoma areas in China. Virus Res. 2018, 250, 75–80.
    15. Fu, J.; Li, Z.; Li, N. The association between COX-2 gene rs5275 polymorphism and Nasopharyngeal carcinoma risk. Pathol. Res. Pract. 2018, 214, 1579–1582.
    16. Niu, Y.; Zhou, G.; Wang, Y.; Qin, J.; Ping, J.; Zhang, Q.; Han, B.W.; Liu, Y.X.; Yang, C.; Zhai, Y.; et al. Association of MCP-1 promoter polymorphism with susceptibility to nasopharyngeal carcinoma. J. Cell Biochem. 2019, 120, 6661–6670.
    17. Wang, R.; Qin, H.M.; Qin, L.; Wei, J.X.; Wei, Y.X.; Wang, J.L. Genetic association of promoter in GRP78 gene with nasopharyngeal carcinoma in a Chinese population. Int. J. Clin. Oncol. 2019, 24, 359–365.
    18. Ning, S.; Yao, M.; Wu, Y.; Zhou, X.; Zhong, C.; Yan, K.; Wei, Z.; Xie, Y. Correlation of variable repeat number in the neck regions of DC-SIGN and DC-SIGNR with susceptibility to nasopharyngeal carcinoma in a Chinese population. Cancer Manag. Res. 2018, 10, 3193–3198.
    19. Li, S.; Lu, Z.; Yao, M.; Ning, S.; Wu, Y.; Zhou, X.; Zhong, C.; Yan, K.; Xie, Y.; Wei, Z. Association of Single-Nucleotide Polymorphisms in DC-SIGN with Nasopharyngeal Carcinoma Susceptibility. Dis. Markers 2017, 2017, 6309754.
    20. Lu, S.J.; Day, N.E.; Degos, L.; Lepage, V.; Wang, P.C.; Chan, S.H.; Simons, M.; McKnight, B.; Easton, D.; Zeng, Y.; et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990, 346, 470–471.
    21. Rietveld, C.A.; Medland, S.E.; Derringer, J.; Yang, J.; Esko, T.; Martin, N.W.; Westra, H.J.; Shakhbazov, K.; Abdellaoui, A.; Agrawal, A.; et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013, 340, 1467–1471.
    22. Wang, H.; Wei, X.; Wu, B.; Su, J.; Tan, W.; Yang, K. Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis. Cancer Manag. Res. 2019, 11, 3351–3360.
    23. Lo, K.W.; Chung, G.T.; To, K.F. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin. Cancer Biol. 2012, 22, 79–86.
    24. Wu, L.S.H. Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data. Cancer Genet. Cytogenet. 2006, 168, 105–108.
    25. Dai, W.; Zheng, H.; Cheung, A.K.; Lung, M.L. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016, 5, 16.
    26. Huang, D.P.; Lo, K.W.; van Hasselt, C.A.; Woo, J.K.; Choi, P.H.; Leung, S.F.; Cheung, S.T.; Cairns, P.; Sidransky, D.; Lee, J.C. A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res. 1994, 54, 4003–4006.
    27. Rahman, S.; Subroto, H.; Budiman, B.; Asri, A.; Bachtiar, H. Expression of epidermal growth factor receptor in advance stage nonkeratinizing nasopharyngeal carcinoma in West Sumatra, Indonesia. Arch. Oncol. 2018, 24, 20–23.
    28. Chen, S.; Youhong, T.; Tan, Y.; He, Y.; Ban, Y.; Cai, J.; Li, X.; Xiong, W.; Zeng, Z.; Li, G.; et al. EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis 2020, 41, 723–733.
    29. Yip, T.T.; Ngan, R.K.; Fong, A.H.; Law, S.C. Application of circulating plasma/serum EBV DNA in the clinical management of nasopharyngeal carcinoma. Oral Oncol. 2014, 50, 527–538.
    30. Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.I.; Mak, C.; Tse, I.O.L.; Leung, S.Y.M.; et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. New Engl. J. Med. 2017, 377, 513–522.
    31. Shen, J.J.; Niu, W.N.; Zhou, M.; Zhou, F.; Zhang, H.Y.; Wang, L. Association of Epstein Barr virus A73 gene polymorphism with nasopharyngeal carcinoma. Genet. Test. Mol. Biomark. 2015, 19, 187–190.
    32. Xu, M.; Yao, Y.; Chen, H.; Zhang, S.; Cao, S.M.; Zhang, Z.; Luo, B.; Liu, Z.; Li, Z.; Xiang, T.; et al. Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat. Genet. 2019, 51, 1131–1136.
    33. Chen, H.C.; Chen, G.H.; Chen, Y.H.; Liao, W.L.; Liu, C.Y.; Chang, K.P.; Chang, Y.S.; Chen, S.J. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br. J. Cancer 2009, 100, 1002–1011.
    34. Liu, X.; Luo, H.N.; Tian, W.D.; Lu, J.; Li, G.; Wang, L.; Zhang, B.; Liang, B.J.; Peng, X.H.; Lin, S.X.; et al. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma. Cancer Biol. Ther. 2013, 14, 1133–1142.
    35. Chen, P.; Guo, X.; Zhou, H.; Zhang, W.; Zeng, Z.; Liao, Q.; Li, X.; Xiang, B.; Yang, J.; Ma, J.; et al. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS ONE 2013, 8, e56929.
    36. Zhang, L.; Deng, T.; Li, X.; Liu, H.; Zhou, H.; Ma, J.; Wu, M.; Zhou, M.; Shen, S.; Li, X.; et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 2010, 31, 559–566.
    37. Zhang, H.; Zou, X.; Wu, L.; Zhang, S.; Wang, T.; Liu, P.; Zhu, W.; Zhu, J. Identification of a 7-microRNA signature in plasma as promising biomarker for nasopharyngeal carcinoma detection. Cancer Med. 2020, 9, 1230–1241.
    38. Lee, K.T.; Tan, J.K.; Lam, A.K.; Gan, S.Y. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit. Rev. Oncol. Hematol. 2016, 103, 1–9.
    39. He, B.; Zeng, J.; Chao, W.; Chen, X.; Huang, Y.; Deng, K.; Huang, Z.; Li, J.; Dai, M.; Chen, S.; et al. Serum long non-coding RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma. Oncotarget 2017, 8, 41166–41177.
    40. Hui, K.F.; Chan, T.F.; Yang, W.; Shen, J.J.; Lam, K.P.; Kwok, H.; Sham, P.C.; Tsao, S.W.; Kwong, D.L.; Lung, M.L.; et al. High risk Epstein-Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer 2019, 144, 3031–3042.
    41. Xu, Y.J.; Zhou, R.; Zong, J.F.; Lin, W.S.; Tong, S.; Guo, Q.J.; Lin, C.; Lin, S.J.; Chen, Y.X.; Chen, M.R.; et al. Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-κB pathway. Cancer Lett. 2019, 447, 33–40.
    42. Lyu, X.; Wang, J.; Guo, X.; Wu, G.; Jiao, Y.; Faleti, O.D.; Liu, P.; Liu, T.; Long, Y.; Chong, T.; et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 2018, 14, e1007484.
    43. Wu, C.C.; Chien, K.Y.; Tsang, N.M.; Chang, K.P.; Hao, S.P.; Tsao, C.H.; Chang, Y.S.; Yu, J.S. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: Nasopharyngeal carcinoma as a model. Proteomics 2005, 5, 3173–3182.
    44. Xiao, Z.; Li, G.; Chen, Y.; Li, M.; Peng, F.; Li, C.; Li, F.; Yu, Y.; Ouyang, Y.; Xiao, Z.; et al. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J. Histochem. Cytochem. 2010, 58, 517–527.
    45. Li, M.; Li, C.; Li, D.; Xie, Y.; Shi, J.; Li, G.; Guan, Y.; Li, M.; Zhang, P.; Peng, F.; et al. Periostin, a stroma-associated protein, correlates with tumor invasiveness and progression in nasopharyngeal carcinoma. Clin. Exp. Metastasis 2012, 29, 865–877.
    46. Li, X.; Fasano, R.; Wang, E.; Yao, K.T.; Marincola, F.M. HLA associations with nasopharyngeal carcinoma. Curr. Mol. Med. 2009, 9, 751–765.
    47. Li, M.X.; Xiao, Z.Q.; Liu, Y.F.; Chen, Y.H.; Li, C.; Zhang, P.F.; Li, M.Y.; Li, F.; Peng, F.; Duan, C.J.; et al. Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J. Cell Biochem. 2009, 106, 570–579.
    48. Ge, S.; Mao, Y.; Yi, Y.; Xie, D.; Chen, Z.; Xiao, Z. Comparative proteomic analysis of secreted proteins from nasopharyngeal carcinoma-associated stromal fibroblasts and normal fibroblasts. Exp. Ther. Med. 2012, 3, 857–860.
    49. Lin, S.J.; Chang, K.P.; Hsu, C.W.; Chi, L.M.; Chien, K.Y.; Liang, Y.; Tsai, M.H.; Lin, Y.T.; Yu, J.S. Low-molecular-mass secretome profiling identifies C-C motif chemokine 5 as a potential plasma biomarker and therapeutic target for nasopharyngeal carcinoma. J. Proteom. 2013, 94, 186–201.
    50. Chang, Y.H.; Wu, C.C.; Chang, K.P.; Yu, J.S.; Chang, Y.C.; Liao, P.C. Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma. J. Proteome Res. 2009, 8, 5465–5474.
    51. Hao, S.P.; Tsang, N.M.; Chang, K.P.; Ueng, S.H. Molecular diagnosis of nasopharyngeal carcinoma: Detecting LMP-1 and EBNA by nasopharyngeal swab. Otolaryngol. Head Neck Surg. 2004, 131, 651–654.
    52. Banko, A.V.; Lazarevic, I.B.; Folic, M.M.; Djukic, V.B.; Cirkovic, A.M.; Karalic, D.Z.; Cupic, M.D.; Jovanovic, T.P. Characterization of the Variability of Epstein-Barr Virus Genes in Nasopharyngeal Biopsies: Potential Predictors for Carcinoma Progression. PLoS ONE 2016, 11, e0153498.
    53. Yu, X.; Ji, M.; Cheng, W.; Wu, B.; Du, Y.; Cao, S. Assessment of the Long-term Diagnostic Performance of a New Serological Screening Scheme in Large-scale Nasopharyngeal Carcinoma Screening. J. Cancer 2018, 9, 2093–2097.
    54. Liu, Z.; Ji, M.F.; Huang, Q.H.; Fang, F.; Liu, Q.; Jia, W.H.; Guo, X.; Xie, S.H.; Chen, F.; Liu, Y.; et al. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: Results from the initial phase of a cluster randomized controlled trial in Southern China. Am. J. Epidemiol. 2013, 177, 242–250.
    55. Tang, F.; Xie, C.; Huang, D.; Wu, Y.; Zeng, M.; Yi, L.; Wang, Y.; Mei, W.; Cao, Y.; Sun, L. Novel potential markers of nasopharyngeal carcinoma for diagnosis and therapy. Clin. Biochem. 2011, 44, 711–718.
    56. Yi, L.; Dong, N.; Shi, S.; Deng, B.; Yun, Y.; Yi, Z.; Zhang, Y. Metabolomic identification of novel biomarkers of nasopharyngeal carcinoma. RSC Adv. 2014, 4, 59094–59101.
    57. Yi, L.; Song, C.; Hu, Z.; Yang, L.; Xiao, L.; Yi, B.; Jiang, W.; Cao, Y.; Sun, L. A metabolic discrimination model for nasopharyngeal carcinoma and its potential role in the therapeutic evaluation of radiotherapy. Metabolomics 2014, 10, 697–708.
    58. Wen, W.; Mai, S.J.; Lin, H.X.; Zhang, M.Y.; Huang, J.L.; Hua, X.; Lin, C.; Long, Z.Q.; Lu, Z.J.; Sun, X.Q.; et al. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J. Transl. Med. 2019, 17, 186.
    59. Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676.
    60. Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320.
    61. Chen, W.; Hu, G.H. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol. Med. 2015, 12, 23–32.
    62. Yu, J.; Huang, Y.; Liu, L.; Wang, J.; Yin, J.; Huang, L.; Chen, S.; Li, J.; Yuan, H.; Yang, G.; et al. Genetic polymorphisms of Wnt/β-catenin pathway genes are associated with the efficacy and toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget 2016, 7, 82528–82537.
    63. Chen, H.; Wu, M.; Li, G.; Hua, L.; Chen, S.; Huang, H. Association between XRCC1 single-nucleotide polymorphism and acute radiation reaction in patients with nasopharyngeal carcinoma: A cohort study. Medicine 2017, 96, e8202.
    64. Guo, X.B.; Ma, W.L.; Liu, L.J.; Huang, Y.L.; Wang, J.; Huang, L.H.; Peng, X.D.; Yin, J.Y.; Li, J.G.; Chen, S.J.; et al. Effects of gene polymorphisms in the endoplasmic reticulum stress pathway on clinical outcomes of chemoradiotherapy in Chinese patients with nasopharyngeal carcinoma. Acta Pharmacol. Sin. 2017, 38, 571–580.
    65. Wang, J.; Guo, C.; Gong, X.; Ao, F.; Huang, Y.; Huang, L.; Tang, Y.; Jiang, C.; Xie, X.; Dong, Q.; et al. The impacts of genetic polymorphisms in genes of base excision repair pathway on the efficacy and acute toxicities of (chemo)radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget 2017, 8, 78633–78641.
    66. Zhai, X.M.; Hu, Q.C.; Gu, K.; Wang, J.P.; Zhang, J.N.; Wu, Y.W. Significance of XRCC1 Codon399 polymorphisms in Chinese patients with locally advanced nasopharyngeal carcinoma treated with radiation therapy. Asia Pac. J. Clin. Oncol. 2016, 12, e125–e132.
    67. Hui, E.P.; Ma, B.B.; Chan, K.C.; Chan, C.M.; Wong, C.S.; To, K.F.; Chan, A.W.; Tung, S.Y.; Ng, W.T.; Cheng, A.C.; et al. Clinical utility of plasma Epstein-Barr virus DNA and ERCC1 single nucleotide polymorphism in nasopharyngeal carcinoma. Cancer 2015, 121, 2720–2729.
    68. Tang, X.R.; Li, Y.Q.; Liang, S.B.; Jiang, W.; Liu, F.; Ge, W.X.; Tang, L.L.; Mao, Y.P.; He, Q.M.; Yang, X.J.; et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: A retrospective, multicentre, cohort study. Lancet Oncol. 2018, 19, 382–393.
    69. Qu, J.Q.; Yi, H.M.; Ye, X.; Zhu, J.F.; Yi, H.; Li, L.N.; Xiao, T.; Yuan, L.; Li, J.Y.; Wang, Y.Y.; et al. MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol. Cancer Ther. 2015, 14, 2653–2664.
    70. Li, G.; Qiu, Y.; Su, Z.; Ren, S.; Liu, C.; Tian, Y.; Liu, Y. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS ONE 2013, 8, e84486.
    71. Li, L.; Huang, S.; Zhu, X.; Zhou, Z.; Liu, Y.; Qu, S.; Guo, Y. Identification of radioresistance-associated proteins in human nasopharyngeal carcinoma cell lines by proteomic analysis. Cancer Biother. Radiopharm. 2013, 28, 380–384.
    72. Gao, F.; Zhao, Z.L.; Zhao, W.T.; Fan, Q.R.; Wang, S.C.; Li, J.; Zhang, Y.Q.; Shi, J.W.; Lin, X.L.; Yang, S.; et al. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun. 2013, 431, 610–616.
    73. Zhang, H.; Cao, H.; Xu, D.; Zhu, K. MicroRNA-92a promotes metastasis of nasopharyngeal carcinoma by targeting the PTEN/AKT pathway. OncoTargets Ther. 2016, 9, 3579–3588.
    74. Deng, X.; Liu, Z.; Liu, X.; Fu, Q.; Deng, T.; Lu, J.; Liu, Y.; Liang, Z.; Jiang, Q.; Cheng, C.; et al. miR-296-3p Negatively Regulated by Nicotine Stimulates Cytoplasmic Translocation of c-Myc via MK2 to Suppress Chemotherapy Resistance. Mol. Ther. 2018, 26, 1066–1081.
    75. Ouyang, P.Y.; Su, Z.; Mao, Y.P.; Liang, X.X.; Liu, Q.; Deng, W.; Xie, F.Y. Prognostic impact of cigarette smoking on the survival of patients with established nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2285–2294.
    76. Shuai, M.; Hong, J.; Huang, D.; Zhang, X.; Tian, Y. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol. Lett. 2018, 16, 6495–6501.
    77. Yuan, Y.; Zhou, X.; Song, J.; Qiu, X.; Li, J.; Ye, L.; Meng, X.; Xia, D. Expression and clinical significance of epidermal growth factor receptor and type 1 insulin-like growth factor receptor in nasopharyngeal carcinoma. Ann. Otol. Rhinol. Laryngol. 2008, 117, 192–200.
    78. Ruan, L.; Li, X.H.; Wan, X.X.; Yi, H.; Li, C.; Li, M.Y.; Zhang, P.F.; Zeng, G.Q.; Qu, J.Q.; He, Q.Y.; et al. Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics. Proteome Sci. 2011, 9, 35.
    79. Wang, S.; Pan, Y.; Zhang, R.; Xu, T.; Wu, W.; Zhang, R.; Wang, C.; Huang, H.; Calin, C.A.; Yang, H.; et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3’UTR and 5’UTR of Jab1/CSN5. Oncogene 2016, 35, 6096–6108.
    80. Wu, Y.; Shen, Z.; Wang, K.; Ha, Y.; Lei, H.; Jia, Y.; Ding, R.; Wu, D.; Gan, S.; Li, R.; et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: Role in TGF-β1-induced epithelia-to-mesenchymal transition. Sci. Rep. 2017, 7, 42507.
    81. Fan, X.; Xie, Y.; Chen, H.; Guo, X.; Ma, Y.; Pang, X.; Huang, Y.; He, F.; Liu, S.; Yu, Y.; et al. Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Cancer Control 2019, 26, 1073274819883895.
    82. Wu, J.B.; Shen, L.; Qiu, L.; Duan, Q.W.; Luo, Z.G.; Dong, X.X. Reversal effect of GnT-V on the radioresistance of human nasopharyngeal carcinoma cells by alteration β1, 6-GlcNAc branched N-glycans. Int. J. Clin. Exp. Pathol. 2015, 8, 9901–9911.
    83. Lu, Y.; Huang, H.; Yang, H.; Chen, D.; Wu, S.; Jiang, Z.; Wang, R. Small molecule inhibitor TW-37 is tolerable and synergistic with chemotherapy in nasopharyngeal carcinoma. Cell Cycle 2017, 16, 1376–1383.
    84. Su, W.; Lin, Y.; Wu, F.; Guo, H.; Li, L.; Zhu, S.; Lai, Z.; Liang, R.; Yang, Z. Bcl-2 regulation by miR-429 in human nasopharyngeal carcinoma in vivo. Int. J. Clin. Exp. Pathol. 2016, 9, 5998–6006.
    85. Zhang, G.; Zhang, K.; Li, C.; Li, Y.; Li, Z.; Li, N.; Zhou, Q.; Shen, L. Serum proteomics identify potential biomarkers for nasopharyngeal carcinoma sensitivity to radiotherapy. Biosci. Rep. 2019, 39, BSR20190027.
    86. Yi, H.M.; Yi, H.; Zhu, J.F.; Xiao, T.; Lu, S.S.; Guan, Y.J.; Xiao, Z.Q. A five-variable signature predicts radioresistance and prognosis in nasopharyngeal carcinoma patients receiving radical radiotherapy. Tumor Biol. 2016, 37, 2941–2949.
    87. Feng, X.P.; Yi, H.; Li, M.Y.; Li, X.H.; Yi, B.; Zhang, P.F.; Li, C.; Peng, F.; Tang, C.E.; Li, J.L.; et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 2010, 70, 3450–3462.
    88. Li, G.; Liu, Y.; Su, Z.; Ren, S.; Zhu, G.; Tian, Y.; Qiu, Y. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur. J. Cancer 2013, 49, 2596–2607.
    89. Liao, L.; Yan, W.J.; Tian, C.M.; Li, M.Y.; Tian, Y.Q.; Zeng, G.Q. Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma. Technol. Cancer Res. Treat. 2018, 17, 1533034617750309.
    90. Huang, L.; Liao, L.; Wan, Y.; Cheng, A.; Li, M.; Chen, S.; Li, M.; Tan, X.; Zeng, G. Downregulation of Annexin A1 is correlated with radioresistance in nasopharyngeal carcinoma. Oncol. Lett. 2016, 12, 5229–5234.
    91. Tang, S.; Huang, W.; Zhong, M.; Yin, L.; Jiang, H.; Hou, S.; Gan, P.; Yuan, Y. Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines. J. Proteom. 2012, 75, 2352–2360.
    92. Huang, J.; Qi, Z.; Chen, M.; Xiao, T.; Guan, J.; Zhou, M.; Wang, Q.; Lin, Z.; Wang, Z. Serum amyloid A1 as a biomarker for radiation dose estimation and lethality prediction in irradiated mouse. Ann. Transl. Med. 2019, 7, 715.
    93. Zhang, B.; Qu, J.Q.; Xiao, L.; Yi, H.; Zhang, P.F.; Li, M.Y.; Hu, R.; Wan, X.X.; He, Q.Y.; Li, J.H.; et al. Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells. J. Cancer Res. Clin. Oncol. 2012, 138, 2117–2125.
    94. Ferrari, D.; Codecà, C.; Bertuzzi, C.; Broggio, F.; Crepaldi, F.; Luciani, A.; Floriani, I.; Ansarin, M.; Chiesa, F.; Alterio, D.; et al. Role of plasma EBV DNA levels in predicting recurrence of nasopharyngeal carcinoma in a Western population. BMC Cancer 2012, 12, 208.
    95. Shao, J.Y.; Li, Y.H.; Gao, H.Y.; Wu, Q.L.; Cui, N.J.; Zhang, L.; Cheng, G.; Hu, L.F.; Ernberg, I.; Zeng, Y.X. Comparison of plasma Epstein-Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. Cancer 2004, 100, 1162–1170.
    96. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Head and Neck Cancer. Version 2. Available online: (accessed on 28 June 2019).
    97. Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469.
    98. Moor, A.E.; Itzkovitz, S. Spatial transcriptomics: Paving the way for tissue-level systems biology. Curr. Opin. Biotechnol. 2017, 46, 126–133.
    99. Wang, L.J.; Chou, Y.F.; Chen, P.R.; Su, B.; Hsu, Y.C.; Chang, C.H.; Lee, J.W. Differential miRNA expression in repeated recurrence of nasopharyngeal carcinoma. Cancer Lett. 2014, 344, 188–194.
    100. Liu, G.; Zeng, X.; Wu, B.; Zhao, J.; Pan, Y. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with radiotherapy response of nasopharyngeal carcinoma and prognosis of head and neck cancer. Cancer Biol. Ther. 2020, 21, 139–146.
    More