Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1969 word(s) 1969 2021-06-02 05:56:31 |
2 update references and layout Meta information modification 1969 2021-06-03 11:47:33 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Bayonas-Ruiz, A. CPET in Patients with HCM. Encyclopedia. Available online: https://encyclopedia.pub/entry/10469 (accessed on 29 March 2024).
Bayonas-Ruiz A. CPET in Patients with HCM. Encyclopedia. Available at: https://encyclopedia.pub/entry/10469. Accessed March 29, 2024.
Bayonas-Ruiz, Adrián. "CPET in Patients with HCM" Encyclopedia, https://encyclopedia.pub/entry/10469 (accessed March 29, 2024).
Bayonas-Ruiz, A. (2021, June 03). CPET in Patients with HCM. In Encyclopedia. https://encyclopedia.pub/entry/10469
Bayonas-Ruiz, Adrián. "CPET in Patients with HCM." Encyclopedia. Web. 03 June, 2021.
CPET in Patients with HCM
Edit

We aim to review and analyze the available data from the literature on the value of Cardiopulmonary Exercise Test (CPET) in HCM. 

hypertrophic cardiomyopathy physical activity exercise test pathophysiology prognosis

1.Introduction

Hypertrophic cardiomyopathy is the most frequent and best characterized inheritable cardiac disease (1:500 general population). It is defined by the presence of left ventricular hypertrophy (LVH), measured as thickness of ≥15 mm in adults, in the absence of other loading conditions [1][2]. HCM causes significant morbidity and mortality, and its natural history includes the development of atrial and ventricular arrhythmias such as atrial fibrillation or flutter, and heart failure, stroke, and sudden cardiac death. SCD is the most frequent severe event with a 1% annual incidence [2][3]. In some developed countries, HCM is the most important cause of SCD among young people and athletes [3].
A series of clinical parameters associated with an increased risk of SCD during the follow-up of these patients have been identified. These include the magnitude of the LVH, severity of the left ventricular outflow tract gradient, left atrial diameter, familiar history of syncope or SCD, and the non-sustained ventricular tachycardia (NSVT) in the ambulatory ECG monitoring [4][5][6][7] but also ABPRE and the presence of ventricular arrhythmias. While every parameter has low predictive value when considered alone, risk scores derived from population size sample of patients have been developed [4][5]. HCM patients’ response to exercise has been largely studied. Values of VO2max and ATVO2 have been found reduced in some series. When functional limitation is present, this can be explained related to a reduction in the stroke volume, the chronotropic reserve, an imbalanced ventilation perfusion, and an inadequate peripheral oxygen utilization.
Patients with chronic diseases frequently adapt their lifestyles to the functional limitations associated with their pathology. Exercise testing in HCM patients is a useful tool to reveal subclinical symptoms and provides valuable information for exercise prescription [8]. HCM patients’ response to exercise has been widely investigated and even proposed as one of the differential diagnostic variables between cases of physiological hypertrophy in athletes and HCM [9][10].
While a comprehensive assessment of functional capacity with ergometry, VO2max analysis with echocardiography allows a better understanding of the pathophysiology in HCM, the diversity of protocols prevents from comparisons between studies. Dyspnea, chest pain, and syncope on exertion are a consequence of the complex involvement of cardiac and extracardiac factors. LVOT together or not with mitral regurgitation, diastolic dysfunction, myocardial ischemia, rhythm disorders, or autonomic imbalance, are the main cardiac factors involved in symptoms development.
The main aim of the study was to present a systematic review and a meta-analysis of the of available data on cardiopulmonary exercise functional assessment of patients with HCM. The analysis included the evaluation of methodological protocols and the impact of relevant clinical characteristics such as age group, obstruction severity, degree of hyper-trophy and the prognostic implications of the results of the functional tests.

2. Study Sample

Original search yielded 2616 results and 12 more were added based on the exploration of the references of systematic reviews and meta-analyses related to hypertrophic cardiomyopathy. When full texts were not available online, authors were contacted after an initial screening for title and abstract. A flow diagram of the search process is available in Figure 1. One hundred and two full texts were read after the first screening, of which, 69 were included for qualitative synthesis. The protocol was designed ad hoc and not published. All data concerning methodological designs are showed in Table 1. They included 11,672 patients which were 48 ± 14 years old and had an average body mass index of 26.9 ± 6.5 kg/m2 as evaluated with data from 21 studies and 6558 patients. In total, 65.9% of them were men and 34.1% women. In 18 of the 69 articles, at least one extracardiac variable was included, among which the presence of diabetes and pathologies involving the lipidic metabolism were the most common with 14 and 7 times reported, respectively. The presence of diabetes was calculated with data from 3665 patients with a prevalence of 7.6%; and from 1927 patients for dyslipidemias with a prevalence of 45.1%. Other comorbidities such as hypertension and smoking habit were present in 32.8% and 30.6% of patients, respectively.
Figure 1. Flow diagram of the search process. Adapted from Moher and collaborators [11].
Table 1. Methodological characteristics of publications.
Methodological characteristics of publications.
Author, Year n Age (Years) %W CPETMaterial CPET Intensity Drug Therapy Extracardiac Variables Cardiac Variables Measured
Initial Added Lapse LVOT MR PCWP ABPRE Events
Abozguia, 2010 [12] 56 52 ± 11 29 Treadmill 4.7 M 2–3 M 3′ Not controlled - Out - - - -
Aljaroudi, 2012 [13] 495 50 ± 15 32 Treadmill 4.7 M 2–3 M 3′ Disc. (12 h) DM, HL BL BL - - Out
Arena, 2008 [14] 83 38 ± 10 39 Upright CE 15 W 15 W 1′ Continued - Out Out BL, Ex - -
Austin, 2010 [15] 50 44 ± 13 38 Treadmill - - - Continued - BL, Ex BL - Ex -
Axelsson, 2016 [16] 130 52 ± 13 35 Upright CE 25 W 25 W 2′ Continued - BL - - - BL
Azarbal, 2014 [17] 265 52 ± 15 39 Treadmill 2 mph - - Continued DM, HL BL BL - Ex -
Binder, 2007 [18] 217 56 ± 16 41 - - - - Not registered Creatinine BL BL - - -
Bonow, 1985 [19] 70 47 47 Treadmill 2 mph 2.5% 2′ Administered - BL - - - Ex
Briguori, 1999 [20] 52 41 29 Upright CE 60 rpm 1 W 3″ Disc. (5H-L) - BL BL - Ex Ex
Briguori, 2001 [21] 44 40 ± 15 27 (?) CE 60 rpm 1 W 3″ Disc. (5H-L) Blood analysis BL BL - - Ex
Chan, 1990 [22] 13 42 ± 14 38 Upright CE 28 W 22 W 3′ Administered - BL - BL - Out
Chikamori, 1992 [23] 81 41 46 Treadmill 4.7 M 2–3 M 3′ Disc. (?) - BL Out - Out Out
Choi, 2008 [24] 32 55 ± 11 19 Supine CE 25 W 25 W 3′ Disc. (?) Creatinine, HL BL Out - - -
Ciampi, 2007 [25] 22 36 ± 13 23 Treadmill 2.7 M 2–3 M 3′ Disc. (5H-L) - BL - - Ex Ex
Coats, 2014 [26] 1898 47 ± 15 33 Upright CE 0 W 10–30W 1′ Continued - BL BL - Ex Ex
D’Andrea, 2017 [27] 45 38 ± 15 22 Supine CE - 25 W 2′ No drugs used - BL - BL, Ex - -
de la Morena, 2003 [28] 98 44 ± 15 28 Treadmill 4.7 M 2–3 M 3′ Disc. (48 h) - BL BL - Ex Ex
de la Morena, 2013 [29] 87 54 ± 13 33 Treadmill 4.7 M 2–3 M 3′ Not controlled - BL, Ex BL, Ex - Ex Ex
Desai, 2014 [30] 426 44 ± 14 22 Treadmill 4.7 M 2–3 M 3′ Continued DM BL, Ex BL, Ex - Ex Ex
Dimitrow, 1996 [31] 10 37 ± 7 - Treadmill 2.7 M 2–3 M 3′ Administered DM, HL BL - - - -
Dumont, 2007 [32] 64 51 ± 14 33 Treadmill 4.7 M 2–3 M 3′ Disc. (72 h) - BL - - Ex BL
Efthimiadis, 2011 [33] 68 45 ± 15 34 Treadmill 4.7 M 2–3 M 3′ Not controlled - BL - - Ex BL
Ferguson, 2016 [34] 22 14 ± 3 44 Upright CE 25 W 25 W 3′ Continued - BL, Ex - - - -
Finocchiaro, 2015 [35] 156 51 ± 14 38 Treadmill - - - Continued - BL BL - - -
Frenneaux, 1989 [36] 23 30 39 Treadmill 2.7 M 2–3 M 3′ Continued - BL Out BL, Ex - BL
Ghiselli, 2019 [37] 292 46 ± 16 28 Semisup CE - 25 W 2′ Continued DM BL, Ex BL, Ex - Ex BL, Ex
Ha, 2005 [38] 29 57 ± 10 16 Supine CE 25 W 25 W 3′ Disc. (?) DM - - - - -
Hernández, 2015 [39] 40 55 ± 12 36 Treadmill 2.7 M 2–3 M 3′ Not registered DM BL - - - -
Jones, 1998 [40] 50 35 ± 14 30 Upright CE 0 W 5–15 W 1′ Disc. (48 h) - BL - - Out Ex
Kim, 2004 [41] 21 49 ± 15 43 Treadmill 4.7 M 2–3 M 3′ Administered - BL - - - -
Kitaoka, 2009 [42] 31 52 ± 17 35 Upright CE 0 W 15 W 1′ Continued - BL - - Ex -
Kjaergaard, 2005 [43] 99 49 ± 15 34 Treadmill 2 mph 2 M 2′ Continued - BL BL Out - -
Konecny, 2015 [44] 198 53 ± 16 38 Treadmill 2.5 M 2,5 M 2′ Continued DM, ∑skinfold BL BL - - -
Lafitte, 2013 [45] 107 52 ± 15 33 Semisup CE - - - Continued - BL, Ex BL - - Ex
Larsen, 2018 [46] 510 51 ± 15 36 Treadmill - 2 M 2′ Disc. (?) - BL BL - - BL
Le, 2009 [47] 63 48 ± 15 28 Treadmill - - - Continued DM, HL BL, Ex BL, Ex - Ex Ex
Lele, 1995 [48] 23 30 39 SupC + Tread 25 W 12.5 W 3′ Discont. (120 h) - BL BL BL, Ex Ex BL, Ex
Lösse, 1983 [49] 122 42 ± 3 - Supine CE - - - Administered - BL, Ex - BL, Ex Ex -
Luo, 2015 [50] 273 50 ± 15 30 Treadmill 2.7 M 2–3 M 3′ Not registered - BL, Ex - - Ex Ex
Ma, 2014 [51] 27 54 ± 12 42 Treadmill 2.7 M 2–3 M 3′ Not registered DM BL, Out BL, Out - - -
Magri, 2014 [52] 180 47 ± 16 25 Upright CE 0 W - - Continued - BL - - - -
Magri, 2016 [53] 683 49 ± 16 31 Supine CE - - - Continued DM BL - - Ex Ex
Magri, 2018 [54] 767 48 ± 16 32 (?) CE 0 W 5–15 W - Not controlled - BL - - Ex BL, Ex
Malek, 2009 [55] 13 - - Treadmill - - - Not registered - - - - - -
Matsumoto, 2005 [56] 27 35 33 Treadmill - 0.5% 1′ Continued - BL, Out BL - - -
Matsumura, 2002 [57] 85 38 ± 14 34 Upright CE 0 W 5–15 W 1′ Disc. (5H-L) - BL Out - - -
Menon, 2008 [58] 88 14 25 Treadmill 2.7 M 2–3 M 3′ Not registered - BL BL - - -
Miki, 1990 [59] 22 47 ± 15 18 Treadmill 2.7 M 2–3 M 3′ Disc. (120 h) - - - BL, Ex - -
Mizukoshi, 2013 [60] 33 59 ± 16 27 Semisup CE 20 W 1–2 W 6″ Continued - Out - - - Ex
Moneghetti, 2017 [61] 131 52 ± 13 37 Treadmill - - - Not controlled - BL BL - Ex BL
Nihoyannopoulos, 1992 [62] 40 41 45 Treadmill 2.7 M 2–3 M 3′ Continued - BL BL - - -
Nistri, 2010 [63] 74 45 ± 16 28 Upright CE - 25 W 2′ Disc. (5H-L) - BL, Ex BL - - Ex
Payá, 2008 [64] 120 47 ± 16 30 Treadmill 4.7 M 2–3 M 3′ Not registered - BL - - Ex BL
Peteiro, 2012 [65] 239 52 ± 15 39 Treadmill 2.7 M 2–3 M 3′ Continued DM, HL BL, Ex BL, Ex - Ex BL, Ex
Pozios, 2018 [66] 95 49 ± 16 31 Treadmill 2.7 M 2–3 M 3′ Continued DM, HL BL, Ex - - - Ex
Re, 2017 [67] 197 45 ± 15 35 Upright CE - 10W 1′ Disc. (72 h) - BL, Ex BL - Ex Out
Romero, 2008 [68] 98 46 ± 15 29 Treadmill 2.7 M 2–3 M 3′ Not registered - BL - - Ex BL
Rosing, 1979 [69] 27 44 ± 3 41 Treadmill 2 mph 2.5% 2′ Administered - BL - BL - -
Sachdev, 2005 [70] 43 36 ± 10 40 Upright CE - 15 W - Not registered - Out BL BL, Ex - -
Saura, 2009 [71] 75 46 ± 14 25 Treadmill 4.7 M 2–3 M 3′ Disc. (48 h) DM BL - - Ex BL
Shah, 2019 [72] 9 29 ± 8 0 Upright CE 0 W 20 W 1′ Continued Blood analysis Out - - - Ex
Shizukuda, 2005 [73] 49 36 ± 10 41 Upright CE - 5 W - Not registered - Out - BL, Ex - -
Smith, 2018 [74] 589 51 ± 14 39 Treadmill - - - Continued - BL - - - -
Smith, 2018 [75] 1177 53 ± 14 43 Treadmill - 2 M 2′ Continued DM, HL, Hb BL - - Ex -
Thaman, 2006 [76] 171 46 ± 18 63 Upright CE - 10–25W 1′ Continued - BL - - - BL
Wu, 2019 [77] 67 53 ± 11 12 Semisup CE 25 W 25 W 2′ Disc. (24 h) - Out - - - -
Wu, 2019 [78] 88 52 ± 12 14 Semisup CE 25 W 25 W 2′ Disc. (24 h) - BL - - - -
Wu, 2019 [79] 76 48 ± 12 20 Semisup CE 25 W 25 W 2′ Disc. (24 h) - BL, Ex - Ex Ex -
Yetman, 2001 [80] 17 12 ± 3 30 Treadmill 4.7 M 2–3 M 3′ Not controlled - BL, Ex BL - - -
%W: percentage of women in the sample; CPET: cardiopulmonary exercise test; BL: baseline measure; EX: exercise measure; Out: exclusion criteria; CE: cycle-ergometer; Sup CE: supine cycle-ergometer; Semisup CE: semi-supine CE; Tread: treadmill; (?) CE: cycle-ergometer with unknown position of the patient; 5H-L: 5 half-lives; Disc.: drug therapy withdrawn a certain time before the test; Discont. (?): drug therapy withdrawn before the test but no further information about time available; ‘M’: METs; DM: diabetes mellitus; HL: hyperlipidemia; ∑skinfolds: summatory of three skinfolds; Hb: hemoglobin content. ‘Not controlled’: drug use reported without information about its management. When added intensity is reported with ‘%’, it means that slope of the treadmill was augmented in that certain percentage.
Management of the pharmacological therapy showed 12 different options and was evaluated in 60 of the 69 studies. In seven of them, the use of drugs was recorded but no further information about its management was provided. In 26 of the 53 remaining, drugs were not discontinued before the study; in 6, the researchers provided it; and in 1, none of the subjects were on medication. Finally, in the 20 remaining studies, drugs were discontinued with variable time from 5 days to 12 h prior to the exercise test.
Treadmill was the most common ergometer employed (n = 37 studies), followed by upright cycle-ergometer (n = 16 studies), supine and semi-supine cycle-ergometers (n = 6 studies each). Bruce’s protocol [81] and its modified version [82] were the most frequently used, while there was a marked heterogeneity in the protocols employed in the cycle-ergometers. The initial intensity was set between 0 W and 28 W with increments ranging from 5 W to 30 W and lapses lasting 1 to 3 min. There were 2 publications where the intensity was increased in a ramp-like fashion adding 1–2 W each 1–6 s.

3. Conclusions

CPET is a valuable tool and can safely perform for assessment of physical functional capacity in patients with HCM. VO2max is the most common performance measurement evaluated in functional studies, showing higher values in those based on cycle-ergometer compared to treadmill. A variety of protocols and the lack of standard protocol difficult comparisons between studies. Subgroup analysis shows that exercise intolerance seems to be more related to age, medication and comorbidities than HCM phenotype itself. Lower VO2max is consistently seen in HCM patients at risk of major cardiovascular outcomes.

References

  1. Gersh, B.J.; Maron, B.J.; Bonow, R.O.; Dearani, J.A.; Fifer, M.A.; Link, M.S.; Naidu, S.S.; Nishimura, R.A.; Ommen, S.R.; Rakowski, H.; et al. ACCF/AHA guideline 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 2011, 124, 2761–2796.
  2. Wigle, E.; Sasson, Z.; Henderson, M.; Ruddy, T.; Fulop, J.; Rakowski, H.; Williams, W.G. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog. Cardiovasc. Dis. 1985, 28, 1–83.
  3. Maron, B.J. Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 2010, 121, 445–456.
  4. Argulian, E.; Chaudhry, F.A. Stress testing in patients with hypertrophic cardiomyopathy. Prog. Cardiovasc. Dis. 2012, 54, 477–482.
  5. Maron, M.S.; Olivotto, I.; Zenovich, A.G.; Link, M.S.; Pandian, N.G.; Kuvin, J.T.; Nistri, S.; Cecchi, F.; Udelson, J.E.; Maron, B.J. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 2006, 114, 2232–2239.
  6. Shah, J.S.; Esteban, M.T.T.; Thaman, R.; Sharma, R.; Mist, B.; Pantazis, A.; Ward, D.; Kohli, S.K.; Page, S.P.; Demetrescu, C. Prevalence of exercise-induced left ventricular outflow tract obstruction in symptomatic patients with non-obstructive hypertrophic cardiomyopathy. Heart 2008, 94, 1288–1294.
  7. Joshi, S.; Patel, U.K.; Yao, S.; Castenada, V.; Isambert, A.; Winson, G.; Chaudhry, F.A.; Sherrid, M.V. Standing and exercise doppler echocardiography in obstructive hypertrophic cardiomyopathy: The range of gradients with upright activity. J. Am. Soc. Echocardiogr. 2011, 24, 75–82.
  8. Peteiro, J.; Bouzas-Mosquera, A. Exercise echocardiography. World J. Cardiol. 2010, 2, 223–232.
  9. Sharma, S.; Whyte, G.; Elliott, P.; Padula, M.; Kaushal, R.; Mahon, N.; McKenna, W.J. Electrocardiographic changes in 1000 highly trained junior elite athletes. Br. J. Sports Med. 1999, 33, 319–324.
  10. Grazioli, G.; Usín, D.; Trucco, E.; Sanz, M.; Montserrat, S.; Vidal, B.; Gutiérrez, J.; Canal, R.; Brugada, J.; Mont, L.; et al. Differentiating hypertrophic cardiomyopathy from athlete’s heart: An electrocardiographic and echocardiographic approach. J. Electrocardiol. 2016, 49, 539–544.
  11. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097.
  12. Abozguia, K.; Nallur-Shivu, G.; Phan, T.T.; Ahmed, I.; Kalra, R.; Weaver, R.; McKenna, W.J.; Sanderson, J.E.; Elliott, P.; Frenneaux, M.P. Left ventricular strain and untwist in hypertrophic cardiomyopathy: Relation to exercise capacity. Am. Heart J. 2010, 159, 825–832.
  13. Aljaroudi, W.A.; Desai, M.Y.; Alraies, M.C.; Thamilarasan, M.; Menon, V.; Rodriguez, L.L.; Smedira, N.; Grimm, R.A.; Lever, H.M.; Jaber, W.A. Relationship between baseline resting diastolic function and exercise capacity in patients with hypertrophic cardiomyopathy undergoing treadmill stress echocardiography: A cohort study. Br. Med. J. 2012, 2, e0022104.
  14. Arena, R.; Owens, D.S.; Arevalo, J.; Smith, K.; Mohiddin, S.A.; McAreavey, D.; Ulisney, K.L.; Tripodi, D.; Fananapazir, L.; Plehn, J.F. Ventilatory efficiency and resting hemodynamics in hypertrophic cardiomyopathy. Med. Sci. Sport Exerc. 2008, 40, 799–805.
  15. Austin, B.A.; Popovic, Z.B.; Kwon, D.H.; Thamilarasan, M.; Boonyasirinant, T.; Flamm, S.D.; Lever, H.M.; Desai, M.Y. Aortic stiffness independently predicts exercise capacity in hypertrophic cardiomyopathy: A multimodality imaging study. Heart 2010, 96, 1303–1310.
  16. Axelsson, A.; Iversen, K.; Vejlstrup, N.; Langhoff, L.; Thomsen, A.; Ho, C.Y.; Havndrup, O.; Kofoed, K.F.; Jensen, M.; Bundgaard, H. Left ventricular volume predicts exercise capacity in hypertrophic cardiomyopathy. Int. J. Cardiol. 2016, 203, 676–678.
  17. Azarbal, F.; Singh, M.; Finocchiaro, G.; Le, V.V.; Schnittger, I.; Wang, P.; Myers, J.; Ashley, E.; Perez, M. Exercise capacity and paroxysmal atrial fibrillation in patients with hypertrophic cardiomyopathy. Heart 2014, 100, 624–630.
  18. Binder, J.; Ommen, S.R.; Chen, H.H.; Ackerman, M.J.; Tajik, A.J.; Jaffe, A.S. Usefulness of brain natriuretic peptide levels in the clinical evaluation of patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2007, 100, 712–714.
  19. Bonow, R.; Dilsizian, V.; Rosing, D.R.; Maron, B.J.; Bacharach, S.; Green, M. Verapamil-induced improvement in left ventricular diastolic filling and increased exercise tolerance in patients with hypertrophic cardiomyopathy: Short- and long-term effects. Circulation 1985, 72, 853–864.
  20. Briguori, C.; Betocchi, S.; Romano, M.; Manganelli, F.; Losi, M.A.; Ciampi, Q.; Gottilla, R.; Lombardi, R.; Condorelli, M.; Chiariello, M. Exercise capacity in hypertrophic cardiomyopathy depends on left ventricular diastolic function. Am. J. Cardiol. 1999, 84, 309–315.
  21. Briguori, C.; Betocchi, S.; Manganelli, F.; Gigante, B.; Losi, M.A.; Ciampi, Q.; Gottilla, R.; Violante, A.; Toccheti, C.G.; Volpe, M.; et al. Determinants and clinical significance of natriuretic peptides in hypertrophic cardiomyopathy. Eur. Heart J. 2001, 22, 1328–1336.
  22. Chan, W.L.; Gilligan, D.M.; Ang, E.L.; Oakley, C.M. Effect of preload change on resting and exercise cardiac performance in hypertrophic cardiomyopathy. Am. J. Cardiol. 1990, 66, 746–751.
  23. Chikamori, T.; Counihan, P.J.; Doi, Y.L.; Takata, J.; Stewart, J.T.; Frenneaux, M.P.; McKenna, W.J. Mechanisms of exercise limitation in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 1992, 19, 507–512.
  24. Choi, E.Y.; Ha, J.W.; Rim, S.J.; Kim, S.A.; Yoon, S.J.; Shim, C.Y.; Kim, J.M.; Jang, Y.; Chung, N.; Cho, S.Y. Incremental value of left ventricular diastolic function reserve index for predicting exercise capacity in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2008, 21, 487–492.
  25. Ciampi, Q.; Betocchi, S.; Losi, M.A.; Ferro, A.; Cuocolo, A.; Lombardi, R.; Villari, B.; Chiariello, M. Abnormal blood-pressure response to exercise and oxygen consumption in patients with hypertrophic cardiomyopathy. J. Nucl. Cardiol. 2007, 14, 869–875.
  26. Coats, C.; Rantell, K.; Bartnik, A.; Patel, A.; Mist, B.; McKenna, W.J.; Elliott, P.M. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2014, 8, 1022–1031.
  27. D’Andrea, A.; Limongelli, G.; Baldini, L.; Verrengia, M.; Carbone, A.; Di Palma, E.; Vastarella, R.; Masarone, D.; Tagliamonte, G.; Riegler, L.; et al. Exercise speckle-tracking strain imaging demonstrates impaired right ventricular contractile reserve in hypertrophic cardiomyopathy. Int. J. Cardiol. 2017, 227, 209–216.
  28. De la Morena, G.; Sánchez, R.F.; García, F.J.; González, E.; Figal, D.P.; Soria, F.; Villegas, M.; Ruipérez, J.A.; Valdés, M. Functional assessment of patients with hypertrophic cardiomyopathy by maximal oxygen consumption. Rev. Esp. Cardiol. 2003, 56, 865–872.
  29. De la Morena, G.; Caro, C.; Saura, D.; Marín, F.; Gimeno, J.R.; González, J.; Oliva, M.J.; García-Navarro, M.; López-Cuenca, A.; Espinosa, M.D.; et al. Exercise eco-doppler in hypertrophic cardiomyopathy patients. determinant factors of exercise intolerance. Rev. Esp. Cardiol. 2013, 66, 98–103.
  30. Desai, M.Y.; Bhonsale, A.; Patel, P.; Naji, P.; Smedira, N.G.; Thamilarasan, M.; Lytle, B.W.; Lever, H.M. Exercise echocardiography in asymptomatic HCM. JACC Cardiovasc. Imaging 2014, 7, 26–36.
  31. Dimitrow, P.; Krzanowski, M.; Bodzon, W.; Szczeklik, A.; Dubiel, J.S. Coronary flow reserve and exercise capacity in hypertrophic cardiomyopathy. Heart Vessel. 1996, 11, 160–164.
  32. Dumont, C.A.; Monserrat, L.; Peteiro, J.; Soler, R.; Rodriguez, E.; Bouzas, A.; Fernández, X.; Pérez, R.; Bouzas, B.; Castro-Beiras, A. Relation of left ventricular chamber stiffness at rest to exercise capacity in hypertrophic cardiomyopathy. Am. J. Cardiol. 2007, 99, 1454–1457.
  33. Efthimiadis, G.K.; Giannakoulas, G.; Parcharidou, D.G.; Pagourelias, E.D.; Kouidi, E.J.; Spanos, G.; Kamperidis, V.; Gavrielides, S.; Karvounis, H.; Styliadis, I.; et al. Chronotropic incompetence and its relation to exercise intolerance in hypertrophic cardiomyopathy. Int. J. Cardiol. 2011, 153, 179–184.
  34. Ferguson, M.E.; Sachdeva, R.; Gillespie, S.; Morrow, G.; Border, W. Tissue doppler imaging during exercise stress echocardiography demonstrates a mechanism for impaired exercise performance in children with hypertrophic cardiomyopathy. Electrocardiography 2016, 33, 1718–1725.
  35. Finocchiaro, G.; Haddad, F.; Knowles, J.; Caleshu, C.; Pavlovic, A.; Homburger, J.; Shmargad, Y.; Sinagra, G.; Magavern, E.; Wong, M.; et al. Cardiopulmonary responses and prognosis in hypertrophic cardiomyopathy: A potential role for comprehensive noninvasive hemodynamic assessment. JACC Heart Fail. 2015, 3, 408–418.
  36. Frenneaux, M.P.; Porter, A.; Caforio, A.L.; Odawara, H.; Counihan, P.J.; McKenna, W.J. Determinants of exercise capacity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 1989, 13, 1521–1526.
  37. Ghiselli, L.; Marchi, A.; Fumagalli, C.; Maurizi, N.; Oddo, A.; Pieri, F.; Girolami, F.; Rowin, E.; Mazzarotto, F.; Cicoira, M.; et al. Sex-related differences in exercise performance and outcome of patients with hypertrophic cardiomyopathy. Eur. J. Prev. Cardiol. 2019, 27, 1821–1831.
  38. Ha, J.W.; Cho, J.R.; Kim, J.M.; Ahn, J.A.; Choi, E.Y.; Kang, S.M.; Rim, S.J.; Chung, N. Tissue doppler-derived indices predict exercise capacity in patients with apical hypertrophic cardiomyopathy. Chest 2005, 128, 3428–3433.
  39. Hernández-Romero, D.; Jover, E.; Martínez, C.M.; Andreu-Cayuelas, J.M.; Orenes-Piñero, E.; Romero-Aniorte, A.I.; Casas, T.; Cánovas, S.; Montero-Argudo, J.A.; Valdés, M.; et al. TWEAK and NT-proBNP levels predict exercise capacity in hypertrophic cardiomyopathy. Eur. J. Clin. Investig. 2015, 45, 179–186.
  40. Jones, S.; Elliott, P.M.; Sharma, S.; McKenna, W.J.; Whipp, B.J. Cardiopulmonary responses to exercise in patients with hypertrophic cardiomyopathy. Heart 1998, 80, 60–67.
  41. Kim, H.K.; Kim, Y.J.; Sohn, D.W.; Park, Y.B.; Choi, Y.S. Transthoracic echocardiographic evaluation of coronary flow reserve in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2004, 94, 167–171.
  42. Kitaoka, H.; Kubo, T.; Okawa, M.; Hirota, T.; Hayato, K.; Yamakasi, N.; Matsumura, Y.; Doi, Y.L. Utility of tissue doppler imaging to predict exercise capacity in hypertrophic cardiomyopathy: Comparison with B-type natriuretic peptide. J. Cardiol. 2009, 53, 361–367.
  43. Kjaergaard, J.; Johnson, B.D.; Pellikka, P.A.; Cha, S.S.; Oh, J.K.; Ommen, S.R. Left atrial index is a predictor of exercise capacity in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2005, 18, 1373–1380.
  44. Konecny, T.; Geske, J.B.; Ludka, O.; Orban, M.; Brady, P.A.; Abudiab, M.M.; Albuquerque, F.N.; Placek, A.; Kara, T.; Sahakyan, K.R.; et al. Decreased exercise capacity and sleep-disordered breathing in patients with hypertrophic cardiomyopathy. Chest 2015, 147, 1574–1581.
  45. Lafitte, S.; Reant, P.; Touche, C.; Pillois, X.; Dijos, M.; Arsac, F.; Peyrou, J.; Montaudon, M.; Ritter, P.; Roudaut, R.; et al. Paradoxical response to exercise in asymptomatic hypertrophic cardiomyopathy: A new description of outflow tract obstruction dynamics. J. Am. Coll. Cardiol. 2013, 62, 842–850.
  46. Larsen, C.M.; Ball, C.A.; Hebl, V.B.; Ong, K.C.; Siontis, K.C.; Olson, T.P.; Ackerman, M.J.; Ommen, S.R.; Allison, T.G.; Geske, J.B. Effect of body mass index on exercise capacity in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2018, 121, 100–106.
  47. Le, V.V.; Perez, M.V.; Wheeler, M.T.; Myers, J.; Schnittger, I.; Ashley, E.A. mechanisms of exercise intolerance in patients with hypertrophic cardiomyopathy. Am. Heart J. 2009, 158, e27–e34.
  48. Lele, S.; Thomson, H.; Seo, H.; Belenkie, I.; McKenna, W.J.; Frenneaux, M.P. Exercise capacity in hypertrophic cardiomyopathy role of stroke volume limitation, heart rate, and diastolic filling characteristics. Circulation 1995, 92, 2886–2894.
  49. Lösse, B.; Kuhn, H.; Loogen, F.; Schulte, H.D. Exercise performance in hypertrophic cardiomyopathies. Eur. Heart J. 1983, 4, 197–208.
  50. Luo, H.C.; Dimaano, V.L.; Kembro, J.M.; Hilser, A.; Hurtado-de-Mendoza, D.; Pozios, I.; Tomas, M.S.; Yalcin, H.; Dolores-Cerna, K.; Mormontoy, W.; et al. Exercise heart rates in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2015, 115, 1144–1150.
  51. Ma, G.; Xu, M.; Gao, W.; Li, Z.; Li, W.; Chen, B.; Feng, J.; Wang, H.; Ma, W.; Chen, H.; et al. Left ventricular filling pressure assessed by exercise TDI was correlated with early HFNEF in patients with non-obstructive hypertrophic cardiomyopathy. BMC Cardiovasc. Disord. 2014, 14, 1–7.
  52. Magri, D.; Agostoni, P.; Cauti, F.M.; Musumeci, B.; Assenza, G.E.; De Cecco, C.N.; Muscogiuri, G.; Maruotti, A.; Ricotta, A.; Pagannone, E.; et al. Determinants of peak oxygen uptake in patients with hypertrophic cardiomyopathy: A single-center study. Intern. Emerg. Med. 2014, 9, 293–302.
  53. Magrì, D.; Limongelli, G.; Re, F.; Agostoni, P.; Zachara, E.; Correale, M.; Mastromarino, V.; Santolamazza, C.; Casenghi, M.; Pacileo, G.; et al. Cardiopulmonary exercise test and sudden cardiac death risk in hypertrophic cardiomyopathy. Heart 2016, 102, 602–609.
  54. Magri, D.; Agostoni, P.; Sinagra, G.; Re, F.; Correale, M.; Limongelli, G.; Zachara, E.; Mastromarino, V.; Santolamazza, C.; Casenghi, M.; et al. Clinical and prognostic impact of chronotropic incompetence in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2018, 15, 125–131.
  55. Malek, L.A.; Chojnowska, L.; Klopotowski, M.; Misko, J.; Dabrowski, M.; Kusmierczyk-Droszcz, B.; Maczynska, R.; Piotrowicz, E.; Ruzyllo, W. Left ventricular diastolic function assessed with cardiovascular magnetic resonance imaging and exercise capacity in patients with non-obstructive hypertrophic cardiomyopathy. Kardiol. Pol. 2009, 67, 1–8.
  56. Matsumoto, A.Y.; Arteaga, E.; Ianni, B.M.; Braga, A.M.F.W.; Buck, P.C.; Mady, C. Relationships among exercise capacity, hypertrophy, and left ventricular diastolic function in nonobstructive hypertrophic cardiomyopathy. Am. Heart J. 2005, 150, 144–149.
  57. Matsumura, Y.; Elliott, P.M.; Virdee, M.S.; Sorajja, P.; Doi, Y.; McKenna, W.J. Left ventricular diastolic function assessed using doppler tissue imaging in patients with hypertrophic cardiomyopathy: Relation to symptoms and exercise capacity. Heart 2002, 87, 247–251.
  58. Menon, S.C.; Ackerman, M.J.; Cetta, F.; O’Leary, P.W.; Eiden, B.W. Significance of left atrial volume in patients <20 years of age with hypertrophic cardiomyopathy. Am. J. Cardiol. 2008, 102, 1390–1393.
  59. Miki, T.; Yokota, Y.; Fukuzaki, H. Afterload mismatch in patients with hypertrophic cardiomyopathy. Jpn. Circ. J. 1990, 54, 603–615.
  60. Mizukoshi, K.; Suzuki, K.; Yoneyama, K.; Kamijima, R.; Kou, S.; Takai, M.; Izumo, M.; Hayashi, A.; Ohtaki, E.; Akashi, Y.J.; et al. Early diastolic function during exertion influences exercise intolerance in patients with hypertrophic cardiomyopathy. J. Echocardiogr. 2013, 11, 9–17.
  61. Moneghetti, K.; Stolfo, D.; Christle, J.W.; Kobayashi, Y.; Finocchiaro, G.; Sinagra, G.; Myers, J.; Ashley, E.A.; Haddad, F.; Wheeler, M. Value of strain imaging and maximal oxygen consumption in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2017, 120, 1203–1208.
  62. Nihoyannopoulos, P.; Karatasakis, G.; Frenneaux, M.P.; McKenna, W.J.; Oakley, C.M. Diastolic function in hypertrophic cardiomyopathy: Relation to exercise capacity. J. Am. Coll. Cardiol. 1992, 19, 536–540.
  63. Nistri, S.; Olivotto, I.; Maron, M.S.; Grifoni, C.; Baldini, K.; Baldi, M.; Sgalambro, A.; Cecchi, F.; Maron, B.J. Timing and significance of exercise-induced left ventricular outflow tract pressure gradients in hypertrophic cardiomyopathy. Am. J. Cardiol. 2010, 106, 1301–1306.
  64. Payá, E.; Marín, F.; González, J.; Gimeno, J.R.; Feliu, E.; Romero, A.; Ruiz-Espejo, F.; Roldán, V.; Climent, V.; de la Morena, G.; et al. Variables associated with contrast-enhanced cardiovascular magnetic resonance in hypertrophic cardiomyopathy: Clinical implications. J. Card. Fail. 2008, 14, 414–419.
  65. Peteiro, J.; Bouzas-Mosquera, A.; Fernández, X.; Monserrat, L.; Pazos, P.; Estevez-Loureiro, R.; Castro-Beiras, A. Prognostic value of exercise echocardiography in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2012, 25, 182–189.
  66. Pozios, I.; Pinheiro, A.; Corona-Villalobos, C.; Sorensen, L.L.; Dardari, Z.; Liu, H.Y.; Cresswell, K.; Phillip, S.; Bluemke, D.A.; Zimmerman, S.L.; et al. Rest and stress longitudinal systolic left ventricular mechanics in hypertrophic cardiomyopathy: Implications for prognostication. J. Am. Soc. Echocardiogr. 2018, 31, 578–586.
  67. Re, F.; Zachara, E.; Avella, A.; Baratta, P.; di Mauro, M.; Uguccioni, M.; Olivotto, I. Dissecting functional impairment in hypertrophic cardiomyopathy by dynamic assessment of diastolic reserve and outflow obstruction: A combined cardiopulmonary-echocardiographic study. Int. J. Cardiol. 2017, 15, 743–750.
  68. Romero-Puche, A.; Marín, F.; González-Carrillo, J.; García-Honrubia, A.; Climent, V.; Feliu, E.; Ruiz-Espejo, F.; Payá, E.; Gimeno-Blanes, J.R.; de la Morena, G.; et al. Gadolinium-enhanced cardiovascular magnetic resonance and exercise capacity in hypertrophic cardiomyopathy. Rev. Esp. Cardiol. 2008, 61, 853–860.
  69. Rosing, D.R.; Kent, K.M.; Borer, J.S.; Seides, S.F.; Maron, B.J.; Epstein, S.E. Verapamil therapy: A new approach to the pharmacologic treatment of hypertrophic cardiomyopathy. I. Hemodynamic effects. Circulation 1979, 60, 1201–1207.
  70. Sachdev, V.; Shizukuda, Y.; Brenneman, C.L.; Birdsall, C.W.; Waclawiw, M.A.; Arai, A.E.; Mohiddin, S.A.; Tripodi, D.; Fananapazir, L.; Plehn, J.F. Left atrial volumetric remodeling is predictive of functional capacity in nonobstructive hypertrophic cardiomyopathy. Am. Heart J. 2005, 149, 730–736.
  71. Saura, D.; Marín, F.; Climent, V.; González, J.; Roldán, V.; Hernández-Romero, D.; Oliva, M.J.; Sabater, M.; de la Morena, G.; Lip, G.Y.H.; et al. Left atrial remodelling in hypertrophic cardiomyopathy: Relation with exercise capacity and biochemical markers of tissue strain and remodelling. Int. J. Clin. Pract. 2009, 63, 1465–1471.
  72. Shah, A.B.; Bechis, M.Z.; Brown, M.; Finch, J.M.; Loomer, G.; Groezinger, E.; Weiner, R.B.; Wasfy, M.M.; Picard, M.H.; Fifer, M.A.; et al. Catecholamine response to exercise in patients with non-obstructive hypertrophic cardiomyopathy. J. Physiol. 2019, 597, 1337–1346.
  73. Shizukuda, Y.; Sachdev, V.; Fananapazir, L.; Tripodi, D.; Mohiddin, S.A.; Arai, A.E.; Waclawiw, M.A.; Plehn, J.F. Is functional capacity related to left atrial contractile function in nonobstructive hypertrophic cardiomyopathy? Congest. Heart Fail. 2005, 11, 234–240.
  74. Smith, E.D.; Tome, J.; Mcgrath, R.; Kumar, S.; Concannon, M.; Day, S.M.; Saberi, S.; Helms, A.S. Exercise hemodynamics in hypertrophic cardiomyopathy identify risk of incident heart failure but not ventricular arrhythmias or sudden cardiac death. Int. J. Cardiol. 2018, 1, 226–231.
  75. Smith, J.R.; Medina-Inojosa, J.R.; Layrisse, V.; Ommen, S.R.; Olson, T.P. Predictors of exercise capacity in patients with hypertrophic obstructive cardiomyopathy. J. Clin. Med. 2018, 7, 447.
  76. Thaman, R.; Tomé-Esteban, M.; Barnes, S.; Gimeno-Blanes, J.R.; Mist, B.; Murphy, R.; Collinson, P.O.; McKenna, W.J.; Elliott, P.E. Usefulness of N-terminal Pro-B-Type natriuretic peptide levels to predict exercise capacity in hypertrophic cardiomyopathy. Am. J. Cardiol. 2006, 98, 515–519.
  77. Wu, X.; Li, Y.D.; Wang, Y.D.; Zhang, M.; Zhu, W.Z.; Cai, Q.Z.; Jiang, W.; Sun, L.L.; Ding, X.Y.; Ye, X.G.; et al. Decreased biventricular mechanics and functional reserve in nonobstructive hypertrophic cardiomyopathy patients: Implications for exercise capacity. Int. J. Cardiovasc. Imaging 2019, 35, 869–879.
  78. Wu, X.; Li, Y.; Zhang, M.; Zhu, W.; Cai, Q.; Jiang, W.; Sun, L.L.; Ding, X.Y.; Ye, X.G.; Qin, Y.Y.; et al. Impaired left ventricular mechanics and functional reserve are associated with reduced exercise capacity in patients with hypertrophic cardiomyopathy. Echocardiography 2019, 36, 266–275.
  79. Wu, X.; Li, Y.; Wang, Y.; Zhang, M.; Zhu, W.; Cai, Q.; Jiang, W.; Sun, L.L.; Ding, X.Y.; Ye, X.G.; et al. Impaired right ventricular mechanics at rest and during exercise are associated with exercise capacity in patients with hypertrophic cardiomyopathy. J. Am. Heart Assoc. 2019, 8, e011269.
  80. Yetman, A.T.; Gow, R.M.; Seib, P.; Morrow, W.R.; McCrindle, B.W. Exercise capacity in children with hypertrophic cardiomyopathy and its relation to diastolic left ventricular function. Am. J. Cardiol. 2001, 87, 491–493.
  81. Bruce, R.A.; McDonough, J.R. Stress testing in screening for cardiovascular disease. Bull. N. Y. Acad. Med. 1969, 45, 1288–1305.
  82. Bruce, R.A.; Blackmon, J.R.; Jones, J.W.; Strait, G. Exercising testing in adult normal subjects and cardiac patients. Pediatrics 1963, 32, 742–756.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 420
Revisions: 2 times (View History)
Update Date: 03 Jun 2021
1000/1000