Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1861 word(s) 1861 2021-04-24 14:48:44 |
2 format correct Meta information modification 1861 2021-04-28 04:11:46 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Kwoji, I. Multi-Strain Probiotics. Encyclopedia. Available online: https://encyclopedia.pub/entry/9117 (accessed on 16 April 2024).
Kwoji I. Multi-Strain Probiotics. Encyclopedia. Available at: https://encyclopedia.pub/entry/9117. Accessed April 16, 2024.
Kwoji, Iliya. "Multi-Strain Probiotics" Encyclopedia, https://encyclopedia.pub/entry/9117 (accessed April 16, 2024).
Kwoji, I. (2021, April 28). Multi-Strain Probiotics. In Encyclopedia. https://encyclopedia.pub/entry/9117
Kwoji, Iliya. "Multi-Strain Probiotics." Encyclopedia. Web. 28 April, 2021.
Multi-Strain Probiotics
Edit

Multi-strain probiotics are composed of more than one species or strains of bacteria and sometimes, including some fungal species with benefits to human and animals’ health. The mechanisms by which multi-strain probiotics exert their effects include cell-to-cell communications, interactions with the host tissues, and modulation of the immune systems. 

antibiotics probiotics cell-cell communication synergy antagonism

1. Introduction

The Food and Agriculture Organization/World Health Organization (FAO/WHO) working committee on probiotics defined probiotics as “live microorganisms which when administered in adequate amounts confer health benefits on the host” [1]. The use of probiotics is increasing due to consideration as a suitable option following restrictions on antibiotics as growth promoters in the livestock industries by many countries [2]. There are different forms of probiotics preparations, and sometimes, their efficacy depends on whether they are single- or multi-strain preparations [3]. Compared to single-strain preparations, multi-strain probiotics contain more than one strain of the same species, genera, or multiple genera and sometimes including both bacteria and fungi (Saccharomyces species) [4]. Some single-strain probiotics are beneficial in alleviating gastrointestinal-tracts-associated diseases [5]. However, previous in-vitro studies showed that some multi-strain probiotics could exhibit better inhibitory effects on entero-pathogens [6] and enhanced benefits by combining effects of different strains compared to their single-strain preparations [7]

2. Mechanisms of Action of Probiotics

The mechanism of probiotics' actions is the various means by which they exert their beneficial effects on the host, including immune modulation, stimulation/modulation of gut microbiota, stimulation of digestive enzymes, displacement of pathogens, and production of bioactive compounds [8][9][10]. The gut-associated actions are the principal effects of probiotics, also regarded as the basis of other health benefits [11] as summarized in Figure 1.

Biology 10 00322 g001 550

Figure 1. shows the mechanism of actions of probiotics: the intake of probiotics stimulates an increase in the secretion of mucus by goblet cells, mobilization of intraepithelial leucocytes, and tightening of the tight junctions to protect against the invasion of pathogens. The increase in mucus secretion and improvement of gut microbiota enhances competitive displacement and inhibition of pathogens adhesion to the gut epithelial surface. Furthermore, the action of bioactive substances such as lysozyme and cytokines stimulate phagocytosis by macrophages.

3. Applications and Biological Functions of Multi-Strain Probiotics

3.1. Treatment of Diseases

Different randomized control clinical trials revealed that some specific probiotics are useful in the therapeutic management of gastrointestinal (GI) illnesses like inflammatory bowel disease (IBD) [12], irritable bowel syndrome (IBS), and pouchitis [13][14]. The administration of multi-strain probiotics containing different Lactobacilli species, Streptococcus and Bifidobacterium, to patients who have systemic sclerosis alleviates the symptoms of gastrointestinal reflux and increased microbial alpha diversity group [14] (Table 1).

Table 1. The use of multi-strain probiotics in disease treatment.
Probiotics Mixture Conditions Mechanism of Actions References
B. bifidum W23, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lactococcus lactis W19 and L. lactis W58 Endotoxins Improvement of endothelial barrier, inhibition of mast cell, activation of proinflammatory cytokines, and decrease endotoxin [15]
L. acidophilus, L. casei, B. bifidum, and L. fermentum Cognitive function in Alzheimer’s disease   [16]
L. paracasei DSM 24,733, L. plantarum DSM 24,730, L. acidophilus DSM 24,735, and L. delbrueckii subspecies bulgaricus DSM 24,734), Bifidobacteria (B. longum DSM 24,736, B. breve DSM 24,732, and B. infantis DSM 24,737), and Streptococcus (S. thermophilus DSM 24,731) Systemic sclerosis-associated gastrointestinal disease Improvement of GI reflux and intestinal microbiota alpha diversity [17]
L. acidophilus LaVK2 and B. bifidum Bbvk3 Dextran sodium- sulphate salt-induced ulcerative colitis in mice Reduction in myeloperoxidase activity, levels of TNF-α, IL-6, and IFN-γ [18]
L. bulgaricus 151 and S. thermophilus MK-10 Dextran sodium- sulphate salt-induced colitis Modulation of intestinal microbiota, decrease the content of putrefactive short-chain fatty acid, enhanced production of cytokines. [19]
B. bifidum (KCTC 12199BP), B. lactis (KCTC 11904BP), B. longum (KCTC 12200BP), L. acidophilus (KCTC 11906BP), L. rhamnosus (KCTC 12202BP) and S. thermophilus (KCTC 11870BP) Irritable Bowel Syndrome (IBS) Alleviation of IBS symptoms and improvement of intestinal microbiota [20]
B. longum and L. casei strain Shirota Treatment of obesity Decreased weight and triglyceride in rats fed with the high-fat diet. [21]
S. boulardii, L. acidophilus, L. plantarum, B. lactis IBS associated with bacterial overgrowth and constipation Improvement in bloating, and pain associated with constipation [22]
L. plantarum, B. breve, and L. fermentum high-dietary fat-induced obesity and E. coli challenged Causes reduced Lipopolysaccharide and IL-1β, improved the structure of intestinal flora and increased the fecal short-chain fatty acid (SCFA) content [23]

3.2. Inhibition of Pathogens

A multi-strain probiotic containing different Lactobacillus strains hinders the adhesion of E. coli and E. faecalis to the bladder cell lines, unlike the single-probiotics preparations [24] (Table 2).

Table 2. Multi-strains probiotics against pathogenic microbes.
Multi-Strain Probiotics Isolates Pathogenic Bacteria Host References
B. subtilis and L. mesentroides Vibrio cholereae In-vitro agar diffusion test [25]
L. plantarum F44, L. paracasei F8, B. breve 46 and B. lactis Clostridium difficile Mice [26]
S. oralis and S. salivarius Biofilm (S. aureus, S. epidermidis, S. pneumoniae, S. pyogenes, Propionibacterium acnes and Moraxella catarrhalis Dogs [27]
L. acidophilus LAP5, L. fermentum P2, P. acidophilus LS, and L. casei L21 S. enterica subspecies Enterica Chickens [28]
L. acidophilus LA-5 and B. bifidum BB-12 P. stomatis, P. multocida, P. canis, N. animaloris, and N. zoodegmatis   [29]
P. acidilactici and S. cerevisiae boulardii Enterotoxigenic E. coli (ETEC) F4 Pigs [30]
L. acidophilus NCIMB 30184, L. fermentum NCIMB 30226, L. plantarum NCIMB 30187, and L. rhamnosus NCIMB 30188 Pathogenic E. coli and E. faecalis   [24]
S. cerevisiae, E. faecium, L. acidophilus and Bacillus subtilis E. coli Chickens (broilers) [31]
L. acidophilus NCIMB 30184, L. rhamnosus NCIMB 30188, L. plantarum NCIMB 30187, L. delbrueckii ssp. bulgaricus NCIMB 30186, L. casei NCIMB 30185, L. lactis NCIMB 30222, L. salivarius NCIMB 30225, L. fermentum NCIMB 30226, L. helveticus NCIMB 30224, B. bifidum NCIMB 30179, B. breve NCIMB 30180, B. infantis NCIMB 30181, B. longum NCIMB 30182, S. thermophilus NCIMB 30189 B. subtilis NCIMB 30223 S. typhimurium, C. difficile In-vitro distal colon model [32]
L. acidophilus NCIMB 30184, L. fermentum NCIMB 30188, L. plantarum NCIMB 30187 and L. rhamnosus NCIMB 30226 E. faecalis NCTC 0075 and E. coli NCTC 9001 In-vitro agar diffusion test [6]
L. rhamnosus and L. reuteri Vaginal coliforms and yeast Human (female) [33]
L. crispatus, L. salivarius, L. gallinarum, L. johnsonii, E. faecalis and B. amyloliquefaciens Salmonella Enteritidis A9 Chickens (broiler) [34]
L. acidophilus, L. fermentum, L. plantarum and E. faecium Salmonella enterica Chickens (broiler) [35]
B. amyloliquefaciens B-1895 and B. subtilis KATMIRA1933 Inhibits Proteus mirabilis biofilm formation Invitro [36]
E. faecalis (strains NM815, and NM915) and E. faecium NM1015 C. difficile infection Mice [37]
L. acidophilus (LA-5), and B. animalis subspecies Lactis (Bb12) E. coli induced pyelonephritis Sprague-Dawley rat [38]
L. casei and E. faecium Entamoeba invadens Invitro [39]
B. subtilis, L. acidophilus, P. acidilactici, P. pentosus, Saccharomyces pastorianus Avian pathogenic E. coli and Salmonella Kentucky White leg-horn chicks [40]
L. gasseri and L. rhamnosus Non-Candida albicans biofilm formation In-vitro [41]

3.3. Improvement of Human Health

Multi-strain probiotics had proved beneficial for the treatment of dysentery in addition to the standard regimen with a marked reduction in the extent of bloody stooling and a decreased average length of hospital stay [42]. These effects were a result of the alteration of the microbial and metabolic activities within the gut, and which are enough to modify the disease process and pathological conditions [43].

3.4. Multi-Strains Probiotics in Animal Husbandry

Probiotics may be a potential alternative for improving gastrointestinal health and growth promotion in different animal species [44]. Based on these, the roles of probiotics in the various livestock sub-sectors, including poultry, aquaculture, piggery, and ruminant nutrition, were discussed as follows.

3.5. Poultry Farming

In poultry, the addition of probiotics derived from Lactobacillus, Bacillus [45], and Clostridium species to feed has a positive impact on the growth yield, feed digestion [46], immunity [47], meat quality [48], and coliforms bacterial count [44][49]. The administration of multi-strain probiotics (comprising of L. acidophilus LAP5, L. fermentum P2, P. acidophilus LS, and L. casei L21) to specific-pathogen-free (SPF) chicks infected with Salmonella enterica subspecies enterica decreases the abundance of proteobacteria of which Salmonella is a member [28].

3.6. Aquaculture

The use of probiotics for health improvement has also found application in aquaculture. The addition of multi-strain probiotics in the feed of rohu (Labeo rohita) was revealed to stimulate cellulolytic and amylolytic enzymes secretions with improved growth output [50]. The multi-strain culture of B. subtilis, B. licheniformis, and lactobacilli probiotics significantly improves pacific white shrimps’ growth (Litopenaeus vannamei) and enhances non-specific immunity and the abundance of Bacillus to influence the intestinal microbiota [51].

3.7. Swine Production/Piggery

The weaning period in piggery coupled with diets changes from simply digestible (milk) to solid feeds may result in intestinal perturbation, thereby causing diarrhea and a slow growth rate [52][53][54]. The ingestion of probiotic bacteria (like P. acidilactici) and yeast (S. cerevisiae boulardii) protect from microbial infection by enhancing intestinal defences and performance in different monogastric animals [55].

3.8. Ruminants Nutrition and Production

Some probiotics are suitable supplements in livestock feeds and may improve the rumen’s microbial ecosystem, enhance feed digestion, and restores gut microflora in diarrhea in ruminants [56]. The administration of lactobacilli probiotics enhances calves’ overall health status [57].

3.9. Synbiosis of Multi-Strain Probiotics with Other Biologically Active Molecules

Some probiotics are prepared as synbiotics (prebiotics) along with other active substances for maximum physiological effects. Ingestion of synbiotics made of multi-strain probiotics (containing L. acidophilus strain T16, L. casei strain T2 and B. bifidum strain T1) and 800 mg inulin (HPX) by gravid women with gestational diabetes mellitus decrease the rate of caesarean section and hyperbilirubinemia and hospitalization of newborns [58]. Administration of synbiotics (containing multi-strain probiotics and prebiotics) may alleviate some digestive system conditions, sepsis, and death in preterm babies [59] (Table 3).

Table 3. Use of multi-strain probiotics along with other substances.
Synbiotics Actions Host References
L. acidophilus strain T16, L. casei strain T2) and B. bifidum strain T1 plus 800mg inulin (HPX) decreased the incidence of cesarean section rate and newborn’s hyperbilirubinemia and hospitalization Human (pregnant women) [58]
L. acidophilus, L. rhamnosus, S. thermophilus, and L. delbrueckii subspecies Bulgaricus plus fluconazole Enhance the treatment of Vaginal candidiasis caused Candida albicans humans [60]
L. plantarum, L. acidophilus, L. delbrueckii subspecies bulgaricus, B. bifidum, L. rhamnosus, E. faecium, S. salivarius subspecies thermophilus, Aspergillus oryza, and Candida pintolopesii plus Zinc Enhances growth performance, better feed utilization, increase in villus height in the duodenum and ileum Chicken (broiler) [61]
Synbiotics A: Enterococcus sp., Pediococcus sp., Bifidobacterium sp., Lactobacillus sp. plus fructooligosaccharides Synbiotic B: L. acidophilus, L. casei, L. salivarius, L. plantarum, L. rhamnosus, L. brevis, B. bifidum, B. lactis, S. thermophilus, prebiotic inulin (chicory root extract), protease, amylase, cellulase, hemicellulase, lipase, papain and bromelain Modulate the caecal microbiota without any effects on Salmonella Typhimurium shedding Chickens (layers) [62]
Probiotics; (L. rhamnosus, L. casei L. plantarum B. animalis) prebiotics (383 mg of fructooligosaccharides and 100 mg of galactooligosaccharides) Improved gastrointestinal complications, sepsis, and mortality in premature infants Preterm infants [59]

4. Future Consideration

To maximize all the benefits of probiotics consumption, research should determine the specific mechanisms of actions of probiotics microbes for more specific applications in respective disease conditions. There is also the need to study and understand each probiotics strain’s best combination because some bacteria act synergistically, some additively, and some antagonistically. Additionally, the bioactive substances produced by some probiotics could be extracted to formulate supplements for use in specific conditions where individuals showed some reactions to the consumption of the whole-cells preparations. The harvesting and harnessing of the bioactive substances produced by individual constituents of mixed probiotics could also solve the challenges associated with the inconsistency of viable cells when live microbes are used. That will also enable large-scale production for commercialization. Finally, further studies in this direction could be an essential factor in the future research and development of multi-strain probiotics. 

References

  1. Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506.
  2. Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Sachan, S.; Karthik, K.; Dhama, K. The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 2018, 25, 10611–10618.
  3. Aalaei, M.; Khatibjoo, A.; Zaghari, M.; Taherpour, K.; Akbari Gharaei, M.; Soltani, M. Comparison of single- and multi-strain probiotics effects on broiler breeder performance, egg production, egg quality and hatchability. Br. Poult. Sci. 2018, 59, 531–538.
  4. Timmerman, H.; Koning, C.; Mulder, L.; Rombouts, F.; Beynen, A. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233.
  5. Wilkins, T.; Sequoia, J. Probiotics for gastrointestinal conditions: A summary of the evidence. Am. Fam. Physician 2017, 96, 170–178.
  6. Chapman, C.; Gibson, G.; Todd, S.; Rowland, I. Comparative in vitro inhibition of urinary tract pathogens by single-and multi-strain probiotics. Eur. J. Nutr. 2013, 52, 1669–1677.
  7. Adamberg, S.; Sumeri, I.; Uusna, R.; Ambalam, P.; Kondepudi, K.K.; Adamberg, K.; Wadström, T.; Ljungh, Å. Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator. Microb. Ecol. Health Dis. 2014, 25, 23062.
  8. Yadav, R.; Shukla, P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3233–3242.
  9. Bogucka, J.; Ribeiro, D.M.; Bogusławska-Tryk, M.; Dankowiakowska, A.; da Costa, R.P.R.; Bednarczyk, M. Microstructure of the small intestine in broiler chickens fed a diet with probiotic or synbiotic supplementation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1785–1791.
  10. Bajaj, B.K.; Razdan, K.; Claes, I.J.; Lebeer, S. Probiotic Attributes of the Newly Isolated Lactic Acid Bacteria from Infants’gut. J. Microbiol. Biotechnol. Food Sci. 2020, 2020, 109–115.
  11. Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1675–1683.
  12. Foligné, B.; Parayre, S.; Cheddani, R.; Famelart, M.-H.; Madec, M.-N.; Plé, C.; Breton, J.; Dewulf, J.; Jan, G.; Deutsch, S.-M. Immunomodulation properties of multi-species fermented milks. Food Microbiol. 2016, 53, 60–69.
  13. Bernstein, C.N. Antibiotics, probiotics and prebiotics in IBD. In Nutrition, Gut Microbiota and Immunity: Therapeutic Targets for IBD; Karger Publishers: Basel, Switzerland, 2014; Volume 79, pp. 83–100.
  14. Hajela, N.; Ramakrishna, B.; Nair, G.B.; Abraham, P.; Gopalan, S.; Ganguly, N.K. Gut microbiome, gut function, and probiotics: Implications for health. Indian J. Gastroenterol. 2015, 34, 93–107.
  15. Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ansari, M.G.A.; Masoud, M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 1561–1569.
  16. Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256.
  17. Frech, T.M.; Khanna, D.; Maranian, P.; Frech, E.J.; Sawitzke, A.D.; Murtaugh, M.A. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention. Clin. Exp. Rheumatol. 2011, 29, S22.
  18. Jadhav, S.R.; Shandilya, U.K.; Kansal, V.K. Immunoprotective effect of probiotic dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum on dextran sodium sulfate-induced ulcerative colitis in mice. Probiotics Antimicrob. Proteins 2012, 4, 21–26.
  19. Wasilewska, E.; Zlotkowska, D.; Wroblewska, B. Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in a mouse model of dextran sulfate sodium-induced colitis. J. Dairy Sci. 2019, 102, 37–53.
  20. Yoon, J.S.; Sohn, W.; Lee, O.Y.; Lee, S.P.; Lee, K.N.; Jun, D.W.; Lee, H.L.; Yoon, B.C.; Choi, H.S.; Chung, W.S. Effect of multispecies probiotics on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J. Gastroenterol. Hepatol. 2014, 29, 52–59.
  21. Karimi, G.; Jamaluddin, R.; Mohtarrudin, N.; Ahmad, Z.; Khazaai, H.; Parvaneh, M. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 910–918.
  22. Leventogiannis, K.; Gkolfakis, P.; Spithakis, G.; Tsatali, A.; Pistiki, A.; Sioulas, A.; Giamarellos-Bourboulis, E.J.; Triantafyllou, K. Effect of a preparation of four probiotics on symptoms of patients with irritable bowel syndrome: Association with intestinal bacterial overgrowth. Probiotics Antimicrob. Proteins 2019, 11, 627–634.
  23. Sun, Q.; Zhang, S.; Liu, X.; Huo, Y.; Su, B.; Li, X. Effects of a probiotic intervention on Escherichia coli and high-fat diet-induced intestinal microbiota imbalance. Appl. Microbiol. Biotechnol. 2020, 104, 1243–1257.
  24. Chapman, C.; Gibson, G.; Rowland, I. Effects of single-and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens. Anaerobe 2014, 27, 71–76.
  25. VidyaLaxme, B.; Rovetto, A.; Grau, R.; Agrawal, R. Synergistic effects of probiotic Leuconostoc mesenteroides and Bacillus subtilis in malted ragi (Eleucine corocana) food for antagonistic activity against V. cholerae and other beneficial properties. J. Food Sci. Technol. 2014, 51, 3072–3082.
  26. Kondepudi, K.K.; Ambalam, P.; Karagin, P.H.; Nilsson, I.; Wadström, T.; Ljungh, Å. A novel multi-strain probiotic and synbiotic supplement for prevention of Clostridium difficile infection in a murine model. Microbiol. Immunol. 2014, 58, 552–558.
  27. Bidossi, A.; De Grandi, R.; Toscano, M.; Bottagisio, M.; De Vecchi, E.; Gelardi, M.; Drago, L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect. Dis. 2018, 18, 653.
  28. Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica. Anim. Sci. J. 2019, 90, 737–746.
  29. Zambori, C.; Morvay, A.A.; Sala, C.; Licker, M.; Gurban, C.; Tanasie, G.; Tîrziu, E. Antimicrobial effect of probiotics on bacterial species from dental plaque. J. Infect. Dev. Ctries. 2016, 10, 214–221.
  30. Daudelin, J.-F.; Lessard, M.; Beaudoin, F.; Nadeau, É.; Bissonnette, N.; Boutin, Y.; Brousseau, J.-P.; Lauzon, K.; Fairbrother, J.M. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs. Vet. Res. 2011, 42, 69.
  31. Ahmed, S.T.; Hoon, J.; Mun, H.-S.; Yang, C.-J. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. 2014, 8, 96–104.
  32. Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 2013, 24, 60–65.
  33. Reid, G.; Bruce, A.W. Selection of Lactobacillus strains for urogenital probiotic applications. J. Infect. Dis. 2001, 183, S77–S80.
  34. Neveling, D.P.; van Emmenes, L.; Ahire, J.J.; Pieterse, E.; Smith, C.; Dicks, L. Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob. Proteins 2019, 1–10.
  35. Chen, C.-Y.; Tsen, H.-Y.; Lin, C.-L.; Yu, B.; Chen, C.-S. Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult. Sci. 2012, 91, 2139–2147.
  36. Algburi, A.; Alazzawi, S.A.; Al-Ezzy, A.I.A.; Weeks, R.; Chistyakov, V.; Chikindas, M.L. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation. Probiotics Antimicrob. Proteins 2020, 12, 1471–1483.
  37. Mansour, N.M.; Elkhatib, W.F.; Aboshanab, K.M.; Bahr, M.M. Inhibition of Clostridium difficile in mice using a mixture of potential probiotic strains Enterococcus faecalis NM815, E. faecalis NM915, and E. faecium NM1015: Novel candidates to control C. difficile infection (CDI). Probiotics Antimicrob. Proteins 2018, 10, 511–522.
  38. Sabetkish, N.; Sabetkish, S.; Mohseni, M.J.; Kajbafzadeh, A.-M. Prevention of renal scarring in acute pyelonephritis by probiotic therapy: An experimental study. Probiotics Antimicrob. Proteins 2019, 11, 158–164.
  39. Sarjapuram, N.; Mekala, N.; Singh, M.; Tatu, U. The potential of Lactobacillus casei and Entercoccus faecium combination as a preventive probiotic against Entamoeba. Probiotics Antimicrob. Proteins 2017, 9, 142–149.
  40. Redweik, G.A.; Stromberg, Z.R.; Van Goor, A.; Mellata, M. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poult. Sci. 2020, 99, 752–762.
  41. Tan, Y.; Leonhard, M.; Moser, D.; Ma, S.; Schneider-Stickler, B. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch. Oral Biol. 2018, 85, 40–45.
  42. Sharif, A.; Kashani, H.H.; Nasri, E.; Soleimani, Z.; Sharif, M.R. The role of probiotics in the treatment of dysentery: A randomized double-blind clinical trial. Probiotics Antimicrob. Proteins 2017, 9, 380–385.
  43. Guarner, F.; Malagelada, J.-R. Gut flora in health and disease. Lancet 2003, 361, 512–519.
  44. Zhang, Z.; Kim, I. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 2014, 93, 364–370.
  45. Deniz, G.; Orman, A.; Cetinkaya, F.; Gencoglu, H.; Meral, Y.; Turkmen, I. Effects of probiotic (Bacillus subtilis DSM 17299) supplementation on the caecal microflora and performance in broiler chickens. Rev. Méd. Vét. 2011, 162, 538–545.
  46. Mountzouris, K.; Tsirtsikos, P.; Kalamara, E.; Nitsch, S.; Schatzmayr, G.; Fegeros, K. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 2007, 86, 309–317.
  47. Yang, C.; Cao, G.; Ferket, P.; Liu, T.; Zhou, L.; Zhang, L.; Xiao, Y.; Chen, A. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult. Sci. 2012, 91, 2121–2129.
  48. Mahajan, P.; Sahoo, J.; Panda, P. Effect of probiotic (Lacto-Sacc) feeding, packaging methods and seasons on the microbial and organoleptic qualities of chicken meat balls during refrigerated storage. J. Food Sci. Technol. (Mysore) 2000, 37, 67–71.
  49. Lee, K.; Lillehoj, H.S.; Siragusa, G.R. Direct-fed microbials and their impact on the intestinal microflora and immune system of chickens. J. Poult. Sci. 2010.
  50. Bairagi, A.; Sarkar Ghosh, K.; Sen, S.; Ray, A. Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac. Res. 2004, 35, 436–446.
  51. Xie, J.-J.; Liu, Q.-Q.; Liao, S.; Fang, H.-H.; Yin, P.; Xie, S.-W.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 90, 456–465.
  52. Dlamini, Z.; Langa, R.; Aiyegoro, O.; Okoh, A. Effects of probiotics on growth performance, blood parameters, and antibody stimulation in piglets. S. Afr. J. Anim. Sci. 2017, 47, 765–776.
  53. Castillo, M.; Martín-Orúe, S.M.; Nofrarías, M.; Manzanilla, E.G.; Gasa, J. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet. Microbiol. 2007, 124, 239–247.
  54. Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31.
  55. Lee, S.; Lillehoj, H.; Dalloul, R.; Park, D.; Hong, Y.; Lin, J. Influence of Pediococcus-based probiotic on coccidiosis in broiler chickens. Poult. Sci. 2007, 86, 63–66.
  56. El-Tawab, M.A.; Youssef, I.; Bakr, H.; Fthenakis, G.; Giadinis, N. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 2016, 19, 893–906.
  57. Adetoye, A.; Pinloche, E.; Adeniyi, B.A.; Ayeni, F.A. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018, 18, 96.
  58. Karamali, M.; Nasiri, N.; Shavazi, N.T.; Jamilian, M.; Bahmani, F.; Tajabadi-Ebrahimi, M.; Asemi, Z. The effects of synbiotic supplementation on pregnancy outcomes in gestational diabetes. Probiotics Antimicrob. Proteins 2018, 10, 496–503.
  59. Güney-Varal, İ.; Köksal, N.; Özkan, H.; Bağcı, O.; Doğan, P. The effect of early administration of combined multi-strain and multi-species probiotics on gastrointestinal morbidities and mortality in preterm infants: A randomized controlled trial in a tertiary care unit. Turk. J. Pediatr. 2017, 59, 13–19.
  60. Kovachev, S.M.; Vatcheva-Dobrevska, R.S. Local probiotic therapy for vaginal Candida albicans infections. Probiotics Antimicrob. Proteins 2015, 7, 38–44.
  61. Shah, M.; Zaneb, H.; Masood, S.; Khan, R.U.; Ashraf, S.; Sikandar, A.; Rehman, H.F.U.; Rehman, H.U. Effect of dietary supplementation of zinc and multi-microbe probiotic on growth traits and alteration of intestinal architecture in broiler. Probiotics Antimicrob. Proteins 2019, 11, 931–937.
  62. Khan, S.; Chousalkar, K.K. Short-term feeding of probiotics and synbiotics modulates caecal microbiota during Salmonella Typhimurium infection but does not reduce shedding and invasion in chickens. Appl. Microbiol. Biotechnol. 2020, 104, 319–334.
More
Information
Subjects: Microbiology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 841
Revisions: 2 times (View History)
Update Date: 28 Apr 2021
1000/1000