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Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of
the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase.
Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and
erlotinib are the best studied, and their function more often imaged. TKls block EGFR activation, inducing

apoptosis in cancer cells addicted to EGFR signals.

Non-small cell lung cancer epidermal growth factor receptor egfr fluorescence

microscopy

| 1. A Brief Outline of Non-Small Cell Lung Cancer

Lung cancers are classified in two main histological groups: small-cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC) . SCLC comprises ~15-20% of all primary lung tumours and is often caused by smoking 2.
NSCLC frequently arises among non-smokers and can be sub-divided into adenocarcinoma, squamous cell
carcinoma, the most prevalent, large cell carcinoma, and bronchial carcinoid tumour Bl Like all tumours,
dysregulated cell division is driven in NSCLC by genetic alterations, the accumulation of which eventually enables
tumour cells to acquire limitless replicative potential . Gene sequencing technologies have allowed the
identification of driver oncogenic gene alterations in the EGFR gene itself [, and/or of genes expressing oncogenic
proteins within EGFR’s downstream signalling pathways, especially those that regulate cell survival and
proliferation, on which tumour initiation and growth critically depend € (examples in Box 1). Mutations in genes
downstream of EGFR decouple cell growth and proliferation from EGFR signalling, hence anti-EGFR drugs

become ineffective.

Box 1. Some Common Oncogenes in NSCLC.

EGFR is one of the four members of the human epidermal growth factor (HER) family transmembrane
receptors (HER1L/EGFR, HER2, HER3, and HER4). The prevalence of EGFR oncogene mutations is
50% among Asian patients with lung adenocarcinoma and 15% among Western patients [J. Exon 19
deletions or L858R point mutations in exon 21 account for 90% of the activating mutations in the
tyrosine kinase domain of EGFR, resulting in constitutive activation of EGFR without growth factor-
induced stimulation, thus promoting cell proliferation 2.

EGFR
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KRAS is the predominantly mutated RAS isoform (85%) and also the most frequent oncogene in
NSCLC [8l. KRAS fosters tumour growth via several mechanisms, including by upregulating rate-
KRAS limiting enzymes involved in amino acid, fatty acid, or nucleotide biosynthesis, and by stimulating
scavenging pathways, such as macropinocytosis and autophagy BIl29, which, in turn provide building
blocks for the anabolic routes, also maintaining the energy levels and the cell’s redox potential 1],

BRAF is a proto-oncogene encoding a serine-threonine protein kinase acting downstream of the
RAS/RAF/ERK signalling pathway. BRAF carries signals from membrane receptors (such as EGFR)
to the nucleus of the cell to regulate DNA transcription [12. BRAF is an oncogene located on
chromosome 7 involved in several cell functions, including growth, proliferation, survival, and
differentiation. Immunotherapy is beginning to show promise as an active therapy in BRAF-mutated
NSCLC (3],

BRAF

The ALK gene encodes the ALK tyrosine kinase receptor and is associated with many types of
cancers, including NSCLC 4], There are three types of ALK mutations: rearrangement (ALK-R),
amplification (ALK-A), and point mutation. ALK gene rearrangement is a driving mutation underlying
the development of NSCLC 13, which appears to be more common in younger patients and never or
light smokers diagnosed with adenocarcinoma. ALK can phosphorylate STAT3 and PI3K
independently of ERK to antagonise apoptosis and promote cell survival (18],

ALK

The TP53 gene encodes a DNA damage check point p53 protein, which is at the heart of the cellular
decision to proliferate or activate programmed cell death. It regulates the transcription of ~500 genes
(171 including cell cycle regulatory genes and transcription factors, and DNA repair genes 18], Over

TP53  50% of human cancers carry loss of function mutations in TP53, with the mutant form acting as a
dominant-negative inhibitor towards the wild-type moiety. When chromosomal abnormalities or
environment stresses become overwhelming, p53 can arrest cell-cycle progression and induce
apoptosis. TP53 alterations carry a worse prognosis in NSCLC 19,

A family of three human proto-oncogenes (c-MYC, I-MYC, and n-MYC) code for transcription factors
(201 |n normal cells, depending on nucleotide pools’ levels, growth signals, glucose, or oxygenation,
elevated MYC expression can cause apoptosis. Transformed cells can, however, adapt to
constitutively elevated levels of MYC expression, resist its apoptotic effects, and only respond to MYC
pro-proliferative signals either via loss of growth suppression surveillance mechanisms (e.g.,

TP53 mutation) and/or by gain of pro-survival signals. MYC is a metastasis gene for NSCLC [21],

Myc

Surgery, radiation, and chemotherapy remain among the first-line treatments for NSCLC [22. More targeted
therapies include immune check-point inhibitors, engineered cytotoxic chimeric antigen receptor-immune T cells,
oncolytic viruses, anti-tumour vaccines, and small-molecule inhibitors against oncogenes driving NSCLC tumours
23 Of interest here is the sub-class of quinazoline-derived small-molecule EGFR-selective tyrosine kinase
inhibitors (TKIs) that target EGFR, and specifically first-generation gefitinib and erlotinib, because these two TKIs
are still commonly employed as first-line therapies 24 and have also been extensively investigated via

fluorescence microscopy methods.

EGFR signalling is at the heart of cell growth and proliferation. This makes EGFR mutations highly susceptible to
be exploited by cancer cells to alter their physiology and achieve immortalisation [Bl. Key oncogenetic
EGFR alterations upon which NSCLC tumours become addicted to EGFR signals include somatic mutations in
the EGFR gene clustered around the periphery of the catalytic adenosine triphosphate (ATP)-binding cleft in
EGFR'’s kinase domain (Figure 1A). The two most common are a point substitution in exon 21 (L858R), which, for
example, accounts for 90% of all NSCLC activating oncogenic EGFR mutations in the NSCLC Caucasian patient

subset, and an in-frame deletion in exon 19 (e.g., DL746-P750) 23] (Figure 1B). Lower-frequency mutations
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include point mutations in exon 18 (G719X, G719S, G719A) and exon 20 (V765A and T783A) 28 Different
mutations can display different sensitivities to TKI inhibition of autophosphorylation and downstream signals (see,
for example, [27),
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Figure 1. Gefitinib and erlotinib binding to EGFR’s kinase domain. (A) Top: Structures of gefinitib and erlotinib;
bottom: Schematic representation of the wild-type EGFR tyrosine kinase domain (cyan) bound to erlotinib (orange)
(PDB entry 1M17). The threonine 790 side chain is shown in green (top right of the bound TKI). EGFR numbering
includes the 24 residue signal sequence [28l. Conserved structural features essential to the activation of the kinase
domain, the phosphate-binding loop (P-loop), the aC-helix, and the activation loop are shown. Sites of common
NSCLC TKI-sensitive mutations (exon 19 deletion and L858R substitution) are also shown. Reproduced from [28],
(B) Schematic representation of the domains of EGFR and the corresponding exons. Specific NSCLC-related
mutations in the kinase domain of EGFR (exons 18-24) that are associated with sensitivity or resistance to EGFR-
TKIs are denoted 22, Reproduced from (22,

The first tumour-suppressing responses to TKI therapy were observed for gefitinib and erlotinib almost 20 years
ago (see, for example, BYBLUE2N  Orally administered, these TKIs reversibly outcompete the binding of ATP to the
phosphate-binding loop in the kinase domain of EGFR, thus suppressing its tyrosine kinase activity 28 (Figure
1A). A striking response was found in a subset of ~10-40% of patients who harboured NSCLC tumours driven by
somatic activating mutations in the first 4 exons of the tyrosine kinase domain of the EGFR gene (2435 (Figure
1B). This success led to the approval of gefitinib and erlotinib for the treatment of NSCLC patients bearing such
mutations 381,

Another common driver of NSCLC found in 50-90% of cases is an increase in the EGFR copy number, which often
results in the overexpression of wild-type EGFR (WtEGFR) 7. Among these tumours, approximately 80% were
found to be de novo resistant to gefitinib and erlotinib despite TKIs potently blocking the kinase activity and
autophosphorylation of WtEGFR B8, The intrinsic resistance of WtEGFR-expressing tumours to TKIs is

recapitulated by many other solid tumour types 2. This is so even in the absence of mutations in effectors
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downstream of EGFR that decouple growth and survival pathways from EGFR signalling 13 (Box 1). The reasons

for this are not well understood.

APOPTOSIS: Associated plasma membrane structural changes include translocation of the anionic phosphatidyl
serine (PS) from the inner to the outer leaflet of the lipid bilayer where it can bind Annexin V, a Ca*-dependent
phospholipid-binding protein with high affinity for PS. By labelling Annexin V with fluorescent dyes (e.g., FITC 42,
one can image, for example, via wide-field or confocal microscopy, and/or flow cytometry, Annexin V-positive cells
to determine the rate of apoptosis “1. Fluorescent Annexin V conjugates provide a quick and reliable detection
method of the early stages of apoptosis 42, Apoptosis in cells can also be detected, for example, by imaging
fluorescence conjugates of Bax as it translocates from the cytosol to the outer mitochondrial membrane, and/or

cytochrome C as it is released from the mitochondria into the cytosol 431,

ENDOCYTOSIS: Immunostaining against endosomal protein markers 4! includes against early endosome
proteins (Syntaxin 6 and Rab5 22 and EEA1 [28)) recycling endosome markers (e.g., Rab25 47, and late
endosome/lysosomal markers (Rab7 18 LAMP1 and LAMP2 42 cathepsin D, and LIMPII BY). Primary or
secondary antibodies can be conjugated with dyes of different colours (e.g., Alexa 488, Alexa 594, or Alexa 647).
Typical endosomes (=100 nm) are smaller than optical resolution (~250 nm), hence endosomes look like puncta
under a wide-field or confocal fluorescence microscope. To image EGFR endocytic traffic, one can, for example,
label an EGFR cognate ligand (e.g., EGF) with organic dyes, both visible and infrared 21, or clone EGFR with
tags, such as Halo 22 and SNAP B2l which are subsequently labelled with Alexa or Cyanine dyes. In live cells, one
can use fluorescent protein (FP) fusions of the endosomal markers and/or of other proteins (e.g., clathrin 4]), To

image in the nucleus, a popular method is fluorescence in situ hybridisation (FISH) assays 22,

AUTOPHAGY: FP constructs of the 17 kDa soluble microtubule-associated protein 1A/1B-Light Chain 3 (LC3) 58
are commonly used (e.g., eGFP-LC3, mCherry-LC3, or RFP-LC3). During autophagy, the cytoplasmic form of LC3
(LC3-I) becomes covalently ligated to phosphatidyl ethanolamine (PE). The appearance of fluorescent puncta of
the lipidated LC3-Il form allow determination via wide-field or confocal fluorescence microscopy of the number of
autophagosomes (dia. 500-900 nm 1), where LC3-Il is recruited to 8. Serum depletion and the autophagic
inhibitor 3-methyladenine (chloroquine) are often used as positive controls B9, Colocalisation of red and green
probes (e.g., RFP-LC3 and LysoSensor Green) allows for the morphological observation and quantification of
autophagosome maturation and fusion with the lysosome 9. pH-responsive FPs (and organic dyes) allow the

evaluation of intracellular pH and interrogation of specific subcellular compartments 6],

SINGLE PARTICLE TRACKING (SPT): A direct probe of fluorescent particle movement in live cells 2. In two
colours, SPT can report molecular association and dissociation events in real time from which kinetic and dynamic
interaction parameters can be determined (e.g., 6384 At the plasma membrane, SPT exploits total internal
reflection fluorescence (TIRF) illumination to improve contrast 62!, Suitable organic dyes and other probes have to
be selected to ensure specific interactions with the proteins of interest and to minimise non-specific staining of the

(typically) glass surface where the TIRF evanescent wave illuminating the adjacent basolateral cell surface is
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concentrated 88671 SPT can also be used to track particles in endosomes and at the nucleus using probes, such

as adaptamers and FPs, and/or bright organic dyes, such as Atto 647N (e.g., (68169,

NEAR-FIELD SCANNING OPTICAL MICROSCOPY (NSOM) [79): The resolution of NSOM is defined by the size of
the point light source used (typically 50—-100 nm). NSOM breaks the far-field optical resolution limit (~250 nm) by
exploiting the properties of evanescent waves in close vicinity (i.e., ~nanometres) of the aperture defining the size
of the point light source, which must therefore be brought within nanometres of the surface to collect the near-field
optical signal. The point source is scanned over the surface, without touching it. The distance between the point
light source and the sample surface is usually controlled through a feedback mechanism that is unrelated to the
NSOM signal (e.g., as in AFM) [,

STOCHASTIC OPTICAL RECONSTRUCTION MICROSCOPY (STORM) 2 A single-molecule localisation
microscopy (SMLM) method with a resolution of ~20 nm. It reports on the number of proteins that form
nanoclusters and on the size of the clusters (example shown in Figure 6). STORM is compatible with many
commonly used organic dyes, which can be converted to an off state using specific excitation parameters
combined with oxygen-scavenging imaging buffers. Fluorophores for STORM should be bright, have a high rate of
photo-switching, and exhibit minimal photo-bleaching in thiol-containing buffers. Normally used to analyse clusters

in chemically fixed cells, sub-12 nm resolution is possible in cryo-vitrified samples using solid immersion lenses 2],

FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET): A spectroscopic ruler useful for measuring intra-
molecular and inter-molecular separations in the range ~2—8 nm /4], |t is based on the transfer of excitation energy
between two fluorescent molecules through non-radiative dipole—dipole coupling 278l The rate of energy transfer,
from which the separation between donor and acceptor molecules can be measured, is determined chiefly from the
overlap between the emission spectra of the donor and the excitation spectra of the acceptor. FRET can be
combined with SPT A8 (Figure 6E), fluorescence lifetime imaging (FLIM) B9, and fluorescence polarisation
81 The combination can be used to detect dimers and oligomers, and/or to determine separations between two

planes, as a proxy for molecular orientation at the plasma membrane 2,

FLUOROPHORE LOCALISATION IMAGING WITH PHOTOBLEACHING (FLImP) [831[84]: Based on SMLM, the
position of a cluster of fluorescent molecules changes upon each individual photobleaching event. The shift in the
position of the cluster can be analysed to report on the lateral separations between the molecules in the cluster.
FLImP can measure separations between identical fluorophores in the 0-60 nm range, and can achieve sub-5 nm

resolution 82, Combined with atomic molecular dynamics (MD) simulations, it can report on the dimer and oligomer
structure [831(88],

| 2. EGFR’s Role in the Development of NSCLC Tumours

2.1. EGFR Structure and Signalling Pathways
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EGFR is the founding member of the family of four human receptor tyrosine kinases (HER1-4) 8. Additionally
termed ErbB1 because of its close similarity with the avian viral v-erb-B oncogene protein 88, EGFR was cloned
and sequenced in the early 1980s 2 and is ubiquitously expressed in epithelial, mesenchymal, and neuronal cells
(991 structurally, the EGFR consists of a growth factor-binding ectodomain made out of four subdomains, a single-
pass transmembrane alpha helix, an inner juxtamembrane segment, a kinase domain locus of EGFR’s intrinsic
protein tyrosine kinase activity, and a long unstructured C-terminal domain 21 (Figure 2A). EGFR binds seven
cognate growth factors, namely epidermal growth factor (EGF), transforming growth factor alpha, betacellulin,
heparin-binding EGF-like growth factor, epiregulin, and epigen [22. Growth factor binding induces a conformational
change in EGFR’s ectodomain [22 that exposes a loop required for ectodomain dimerization 2493 (Figure 2A).
This leads to allosteric changes across the plasma membrane, chiefly the formation of a catalytically active
asymmetric kinase domain dimer 28 via which EGFR becomes phosphorylated (p-EGFR) in five key C-terminal
tyrosine phosphorylation sites (Tyr992, Tyrl045, Tyrl068, Tyr1086, and Tyr1173) R7B8l Activating EGFR
mutations and EGFR overexpression elicits growth factor-independent constitutive receptor dimerisation and/or
oligomerisation, thereby activating the catalytic activity of the receptor without the need for the growth factor
stimulus 8129 This allows EGFR to trigger downstream signalling pathways in a growth factor-independent

dysregulated fashion, ultimately eliciting uncontrolled cell division and tumour proliferation 28],
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Figure 2. (A) Cartoon of the EGF-induced receptor dimerisation process and an EGFR sequence diagram. Left: A
tethered single-pass EGFR monomer 23, Right: The EGFR monomer binds EGF to form an extended back-to-
back ectodomain dimer 495 structurally coupled via an N-crossing dimer of two transmembrane alpha-helices
99 to an asymmetric tyrosine kinase dimer (281 in which the activator kinase (pink) allosterically activates a receiver
kinase (blue), which phosphorylates the C-terminal domain of the donor kinase 28129 Reproduced from B3, (B)
Growth factor-dependent EGFR signalling pathways. EGFR activates the RAS/extracellular signal-regulated kinase
(ERK) pathway for cell growth, and the JAK/signal transducer and activator of transcription 3 (STAT3) signalling
cascade for cell survival. Activation of the PI3K/AKT/mammalian target of rapamycin (mTOR) signalling pathway
leads to cell division via AKT phosphorylation and protein synthesis via mTOR phosphorylation. EGFR activates

Phospholipase C gamma (PLCy), which in turn activates the PKC signalling pathway, leading to cell proliferation
100
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Summarised 19%n Figure 2B, EGFR recruits via its C-terminal pY992 the Src Homology 2 (SH2) domain of PLC-y,
which hydrolyses PIP,, releasing diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3), and leading to the
activation of PKC and cell proliferation. EGFR can recruit via pY1068, pY1148, and pY1173 the SH2/SH3 adaptors
GRB2 and SHC, which bind via their SH3 domains the protein scaffolds SOS and GABL1 to initiate well-defined
tyrosine/serine/threonine phosphorylation cascades 19 One is the RAS-RAF-MEK-ERK1/2 signalling pathway,
which leads to ERK activation and translocation of ERK from the cytoplasm to the nucleus, where it upregulates
genes that promote cell growth 192, GRB2 also recruits via GAB1 the lipid kinase PI3K 193 P|3K catalyses
PIP, into PIP3, which recruits AKT, leading to the activation of the PI3K-AKT-mTOR signalling pathway.
Phosphorylation of AKT leads to the inhibition of antagonists of Cyclin D1 and cell division 124 AKT-mediated
phosphorylation of mMTOR upregulates the cell’s anabolic metabolism 123, Phosphorylated EGFR also activates
the JAK2/STAT3 signalling axis to upregulate the transcription of a variety of proteins involved in the survival of
cancer cells 19 EGFR also interacts with c-SRC, a crucial non-receptor tyrosine kinase and an oncogenic partner
in EGFR-driven NSCLC 97, Among many other pro-survival functions %] ¢-SRC synergises with EGFR to
activate STAT3 in a JAK-independent manner (1021,

2.2. TKI Treatments Induce Apoptosis via the Mitochondrial Intrinsic Pathway

The oncogenic addiction of some NSCLC tumours to dysregulated EGFR signalling underpins the rationale for
treating the disease by using TKIs to stop the p-EGFR-dependent downstream signalling pathways that are
essential to sustain uncontrolled cell proliferation, thereby inducing programmed cell death 119, Early experiments
in lung adenocarcinoma A549 cells 111 showed that termination of p-EGFR signals by gefitinib resulted in
phosphorylation and activation of the cell cycle regulator protein p53 (Box 1), followed by p53-dependent
upregulation of PUMA, a pro-apoptotic, BCL2 homology 3 (BH3) domain-containing member of the BCL2 family
(1121 \which activates rapid induction of the caspase-dependent intrinsic apoptosis pathway 222! (Figure 3). Gefinitib
also upregulated pro-apoptotic Fas and downregulated the anti-apoptotic proteins survivin and XIAP 11 Further
experiments in TKI-sensitive lung adenocarcinoma cell lines (PC-9 and H1560, which express the D746—-750
deletion EGFR mutant, and H1975 that express the L858R mutant) showed that erlotinib dramatically induces the
expression of BIM, another pro-apoptotic BH3-only member of the BCL2 family 12 which, like PUMA, also
mediates TKI-induced apoptosis via the intrinsic pathway of caspase activation 114! (for a transcriptional profiling of
NSCLC cell lines, see 113lL16]) |n cells with activating EGFR somatic mutations, BIM’s pro-apoptotic effects are
synergistic with the loss of survivin, whose downregulation enhances gefitinib-induced apoptotic death in TKI-
sensitive NSCLC cells 17, These results were confirmed in lung tumours and xenografts from mice bearing
mutant EGFR-dependent lung adenocarcinomas, which also display increased concentrations of BIM after erlotinib
treatment 27, Gefitinib and erlotinib also block EGFR phosphorylation of ERK and AKT, therefore pushing the
closely regulated equilibrium maintained by the BH3-only BCL2 family towards the activation of effector members
BAK and BAX, which thereby form oligomers at the outer mitochondrial membrane, leading to mitochondrial outer
membrane permeabilisation (MOMP) and apoptosis 118119 (Figure 3). Confocal microscopy images in live cells of
the cellular distribution of BAX fused to GFP before and 3 h after stimulating apoptosis via treatment with

staurosporine 129 gre also shown in Figure 3.

https://encyclopedia.pub/entry/19766 7/22



A Complex Disease: Non-Small Cell Lung Cancer | Encyclopedia.pub

O n*:mj]'

_--"4 Bel-L hick-2
Bef-2
Anti-apoplotic
Sensitiser BLL-2 family
BHZ-onky
Effector Bak

Figure 3. Stimulation of the mitochondrial-dependent intrinsic apoptosis pathway by gefitinib and erlotinib. This
pathway is marked by a key event—mitochondrial outer membrane permeabilization (MOMP)—which results in the
release of cytochrome c from the mitochondrial intermembrane space. MOMP can be triggered by the activation of
BH3-only proteins of the BCL-2 family 222 following their post-translational modification (e.g., phosphorylation)
(121 Activated BH3-only proteins generally stimulate MOMP by inducing the oligomerization of BCL2-associated X
protein (BAX) and/or BCL2 antagonist or killer (BAK) in the outer mitochondrial membrane, thereby forming
supramolecular channels that mediate the liberation of cytochrome ¢ 118 At the cytosol, cytochrome c triggers the
assembly of a caspase-activating complex between caspase 9 and apoptotic protease-activating factor 1 1221, TK]|
inhibition can stimulate the transactivation of genes encoding pro-apoptotic proteins (such as the BH3-only protein
p53-upregulated modulator of apoptosis (PUMA)). Gefitinib and erlotininib can also activate the so-called death
receptor FAS, leading to activation of caspase 8 111112l Caspase 8 proteolytically activates downstream effector
caspases or truncates the BH3-only protein BID (BH3-interacting domain death agonist), which co-activates the
intrinsic pathway of apoptosis by translocating to mitochondria. Caspase-8 interacts with caspase-9 to activate the
executioner caspase-3, which coordinates the destruction of cellular structures, such as DNA fragmentation or
degradation of cytoskeletal proteins 123, Fluorescence image inserts: left: Live cell image of exogenous GFP-BAX
expressed in D407 cells (immortalized human retinal pigment epithelial cells); right: same area imaged after
inducing apoptosis using 1 pM staurosporine prepared in DMSO. Images were taking using a spinning disk
confocal microscope, which is ideal for fast 3D imaging of live cells and using an EM-CCD camera. Scale bar = 5

um. Images reproduced from 129,

2.3. The Development of Resistance to TKI Treatment
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Even among the NSCLC patients that respond, the effects of gefinitib and erlotinib are transient (mean
progression-free survival of 10-14 months) 124, Approximately 50% of NSCLC cases develop a secondary point
substitution in exon 20 of the EGFR gene (T790M), which confers resistance to first-generation TKI by impeding
the inhibition of receptor phosphorylation through a substantially increased affinity of the EGFR’s kinase domain
pocket for ATP [123]. New generations of TKls have been developed in a race to overcome the effects of the single
T790M and double L858R/T790M mutations, including second-generation (irreversible) afatinib and dacomitinib,
and third-generation (T790M selective) osimertinib, which are currently used in the clinic 228, However, further
mutations in the EGFR gene and of downstream effectors eventually allow tumours to overcome the TKI

therapeutic block and resume uncontrolled proliferation [Ell127],

Acquired mutations not only involve the EGFR gene (e.g., the secondary T790M acquired EGFR mutation and
others [28]), but can also be EGFR independent (e.g., loss of p53 function, constitutive activation of RAS, etc. (Box
1)). Together, acquired mutations contribute to increase tumour heterogeneity and develop pro-survival adaptation
mechanisms at cellular and tumour levels 12811129 However, for such mutations to accumulate, cells need to first
survive the initial therapeutic insult. An important observation is that TKIls fail to trigger apoptosis in a fraction of
responsive NSCLC tumour cells addicted to EGFR signals, instead inducing G1 cycle arrest 24, Whilst the latter
contributes to suppress tumour growth, quiescent cells surviving TKI treatment have the opportunity to acquire
mutations and/or invoke adaptation mechanisms by which they can eventually resume uncontrolled proliferation.
Chiefly among EGFR-dependent mechanisms of adaptation are pro-survival functions exercised by EGFR
independently of its kinase activity, which can be recapitulated in quiescent cells by the actions of TKI-bound
EGFRs B9, Examples of EGFR kinase-independent functions include stimulation of DNA synthesis 139
expression of the c-fos proto-oncogene 131 and dysregulation of cellular self-degradation processes 132 with the

latter extensively imaged by fluorescence microscopy methods.
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